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Hotspot exons are common targets of splicing
perturbations
David T. Glidden 1, Jeramiah L. Buerer1, Camillo F. Saueressig 1 & William G. Fairbrother1,2,3✉

High-throughput splicing assays have demonstrated that many exonic variants can disrupt

splicing; however, splice-disrupting variants distribute non-uniformly across genes. We

propose the existence of exons that are particularly susceptible to splice-disrupting variants,

which we refer to as hotspot exons. Hotspot exons are also more susceptible to splicing

perturbation through drug treatment and knock-down of RNA-binding proteins. We develop a

classifier for exonic splice-disrupting variants and use it to infer hotspot exons. We estimate

that 1400 exons in the human genome are hotspots. Using panels of splicing reporters, we

demonstrate how the ability of an exon to tolerate a mutation is inversely proportional to the

strength of its neighboring splice sites.
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Recent studies have shown that splice-disrupting variants are
strongly linked to disease, with up to one-third of disease-
causing variants altering splicing1,2. This discovery under-

scores the importance of determining splice-disrupting potential
when classifying novel variants in terms of their pathogenicity.
Recent technological advances, such as high-throughput splicing
assays and machine learning tools, can classify potential splice-
disrupting variants at the same throughput and scale of variant
discovery3–5. Despite these advances, little progress has been
made in exploiting these findings to develop drugs that rescue
splicing in specific variants. The first drug developed to target a
splicing disorder is nusinersen. It is an antisense oligonucleotide
(ASO) that silences a splicing element in smn2 in order to treat
spinal muscular atrophy6–8. However, allele-specific therapies
face an economic conundrum. Because there are thousands of
potential splice disrupting variants, it is unlikely that additional
ASOs will be developed to target each one, given the time and
cost of drug development.

Most drug development costs can be averted by repurposing
existing drugs. RNA-seq could facilitate drug repurposing for
splicing disorders by detecting all of the splicing events caused by
drug treatment. In fact, many Food and Drug Administration
(FDA)-approved drugs have already been shown to affect splicing
as an off-target effect. It is possible that some of these effects may,
by chance, rescue or exacerbate a splicing disorder. To date,
however, none of these drugs have been repurposed for splicing
disorders9–12. With a better understanding of splicing regulation,
RNA-seq could help to discover potential splicing targets for
other FDA-approved drugs. In addition, when drugs are found to
exacerbate a splicing disorder, warnings could be issued for
patients carrying a corresponding splice-disrupting variant.

Here, we used a machine learning approach to prioritize the
key determinants of exon recognition. We find that exonic fea-
tures are better predictors of splice-disrupting variants than more
local features such as which ESE motif is disrupted. A certain
subset of exons (i.e.,“hotspot exons”) are prone to exon skipping.
Subsequent analyses show that hotspot exons are (1) enriched for
splice-disrupting variants, (2) dependent on a high number of
RNA-binding protein (RBP) binding events, and (3) sensitive to
drug treatment. Mathematical models of splicing kinetics, as well
as mutagenesis studies in FAS exon 6, have suggested that exon
skipping is sensitive to epistatic effects between subsequent exonic
mutations and demonstrates a wild-type exon’s inclusion level is a
predictor of a mutation’s ability to disrupt splicing13. Similar
studies in RON exon 11 have shown exon skipping is also sen-
sitive to cooperative RBP binding14. We report evidence of both
phenomena in vivo across the human exome. Lastly, we show that
exon skipping can be rescued by repressing the recognition of a
downstream flanking exon. Using hotspot exons, we can predict
where splice-disrupting variants are likely to be discovered, and
outline a strategy for developing a class of drugs that targets
flanking exons to partially rescue the effect of splice-disrupting
variants.

Results
Exonic features predict splice-disrupting variants. Recently, a
high-throughput assay (MaPSy) was developed to measure the
degree of splicing disruption caused by SNVs, reported as the
allelic ratio. A variant is determined to be splice-disrupting when
jlog2 allelic ratioð Þj≥ 1:5 (FDR < 0.05). Using data from MaPSy as
well as whole-genome annotations, a gradient boosting machines
(GBM) classifier was trained to identify splice-disrupting variants
(AUC= 0.93) (Fig. 1)15–17.

In addition to predicting individual events, the classifier was
also used to determine which features contribute the most to a

successful prediction. To gain this sort of mechanistic informa-
tion from the classifier, we characterized the relative contribu-
tions of the features of the GBM classifier through a process called
feature selection. When several features are highly correlated, it is
more challenging to evaluate the relative contribution of
individual features18. To circumvent this problem, broad
categories of features were defined in increments of increased
scope (i.e., mutation < motif < exon < transcript) (Fig. 2a). These
categories were then ranked by their contribution to the accuracy
of the classifier. In order to perform this ranking, the GBM
classifier was retrained multiple times, excluding a different
feature category each time. Only the removal of exonic features
resulted in a loss of performance (Fig. 2b). Similar results were
observed when using a Random Forest classifier (Fig. S1)19. In
addition, when training the GBM with only one feature group at a
time, the exonic features showed the highest AUC (Fig. S2). These
results suggest that variants themselves and the binding motifs
they disrupt hold little predictive information. Instead, it is the
properties of the exons that determine which variants disrupt
splicing.

Variants in the same exon tend to affect splicing similarly. If an
exon contains most of the information that determines suscept-
ibility to exon skipping, then most mutations in an exon should
affect splicing in a similar way. In other words, the measurements
of allelic ratios (i.e., the difference in mut/wildtype ratio in the
DNA vs. the RNA) should be similar for variants drawn from the
same exon. In order to test this idea, we examined exons that
were previously assayed in the MaPSy study. Exons were selected
only if more than one variant was assayed in them (i.e., there are
multiple mutant alleles, which have corresponding allelic ratios
from the assay) (n= 1017). This criterion allowed for the com-
putation of the standard deviation of the allelic ratios for each
exon (Fig. 3a). The distribution of these allelic ratios was then
tested against the null hypothesis, which is that variants in the
same exon do not have similar allelic ratios. The null hypothesis
model was created by randomly shuffling allelic ratios across all
exons, thereby removing any potential dependencies between
variants tested in the same exon. The standard deviations in the
unshuffled distribution containing the true allelic ratios were
significantly lower than those in the shuffled one (p « 0.0001;
Wilcoxon signed rank test) (Fig. 3b). This observation is con-
sistent with the findings from the GBM classifier (Fig. 2b), which
suggest that exonic features are strong predictors of allelic ratio.
In addition to exonic features, it also indicates that the allelic ratio
from one variant may be a valuable predictor of allelic ratios from
other variants in the same exon. To determine its predictive
power, two assayed mutations were selected from each exon.
When the first mutation affects splicing, the probability that the
second mutation will also affect splicing increases by 0.37 (0.58
total) (Fig. 3c).

RBP-binding sites required for splicing cluster in hotspot
exons. As hotspot exons are more sensitive to variants that dis-
rupt splicing, it was hypothesized that they would also be more
susceptible to changes in RBP-binding events. RBP-binding
events are not guaranteed to have an impact on splicing. In
order to determine the RBP-binding events that each exon
requires for splicing, RNA-seq data from both siRNA knockdown
and eCLIP studies from ENCODE was analyzed20,21. The HepG2
and K562 cell lines were selected, because they had a total of 35
and 31 splicing factors studied in ENCODE, respectively, using
both methods. In both cell lines, ~10% of the eCLIP binding sites
were deemed necessary for splicing of an exon. We term these loci
“functional binding sites” and define them as sites in or near an
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Fig. 1 Prediction workflow. a Computational pipeline of the GBM classifier. The classifier is composed of features extracted from genomic sequence and
features related to variants tested by MaPSy. b Receiver–operator characteristic (ROC) curve for the GBM classifier.
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Fig. 2 Hierarchy of features for variant prediction. a Features are categorized into one of four groups: mutation, motif, exon, and transcript. Examples of
mutation features include the specific base pair change (G→ T mutations disrupt splicing above all others), and whether or not the wild-type or mutant
allele is predicted to be hybridized. Examples of motif features include change in Maxent score, and the changes in cis-element scores for hexamers
affected by the mutation. Examples of exonic features include splice site usage and average EI score for all hexamers in the exon. Examples of transcript
features include the number of exons in the transcript, and gene length. b Bar plot of the area under the curve (AUC) for different iterations of the GBM
classifier with certain feature groups excluded.
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exon whose splicing is affected by corresponding RBP
knockdown.

To determine whether functional binding sites cluster in
hotspot exons like splice-disrupting variants do, the distribution
of observed functional binding sites per exon was compared to a
theoretical distribution of the total number of expected binding
sites for each exon. The theoretical distribution was created by
sampling from the set of “non-functional binding sites” (no effect
on splicing) at the level of the set of functional binding sites (n=
3505) (Fig. 4a). This sampling approach was used to model the
tendency for RBP-binding sites to cluster, because it should
capture all the sequence and expression biases that could
confound other approaches. Compared to the theoretical
distribution, the observed distribution of functional binding sites
is enriched for exons with higher numbers of bound RBPs
(Fig. 4b). That is, there are fewer exons than expected with 1 or 2
functional binding sites, but more than expected with high
numbers of functional binding sites. This analysis suggests that

functional binding sites cluster in hotspot exons, just as splice-
disrupting variants do. This phenomenon is further demonstrated
by performing an analysis similar to the prior analysis of splicing
mutations (Fig. 3c). By randomly sampling two eCLIP sites from
exons with more than one binding event, the probability that the
second sampled site in the same exon affects splicing increases by
0.15–0.20 when the first site has an effect on splicing (Fig. S3).
Thus, the presence of a functional binding site provides
information on the effect of another site in the same exon, much
like how a splice-disrupting variant can predict the splicing effect
of another sampled variant.

Hotspot exons have low relative splice site usage. If additional
hotspot exons can be identified in the genome, novel variants
discovered in these exons could be prioritized for further studies,
such as MaPSy or other functional assays. Although these assays
are designed to be high-throughput, they cannot yet assay all
exons simultaneously. This limitation can be addressed by a priori
elimination of exons whose splicing is predicted to be unaffected
by perturbations. Prior work has shown that exons with weak
splice sites are susceptible to splicing perturbations3,22. However,
these results came from massively parallel splicing assays, which
were limited to the analysis of a few thousand exons. In order to
generalize the prediction of potential splicing perturbations across
the entire genome without relying on reporter assays, an
empirical measure of splice site recognition was sought. Splice site
usage—the frequency at which exons splice at particular loci—can
be measured from WT RNA-seq data. Of the 287,410 splice sites
for which usage was calculated in the K562 cell line, 71%
(202,975) had a usage of 1.0. The usages of the remaining splice
sites are distributed bimodally around 0 and 1 with 51.2%
(43,249) of non-constitutive splice sites having usages greater
than 0.9 and 20.6% (17,373) having usages less than 0.1 (Fig. S4).

In order to test the validity of splice site usage as a metric, the
relationships between splice site usage and gene features relevant
to splice sites were examined. The haploinsufficiency (HI) score is
one such feature that reflects the proportion of correctly-
processed transcripts required for gene function. If a gene is
haploinsufficient, it means that having only one copy of the
healthy allele is not enough to produce a healthy phenotype23. It
was hypothesized that the proportion of correctly spliced
transcripts is correlated with the joint probability of all necessary
splicing events occurring together. Therefore, splice site usage
should be positively associated with HI score as well, since
haploinsufficient genes are under greater selective pressure to
splice correctly. This hypothesis was confirmed by examining the
average splice site usage in genes with different levels of HI scores
(Fig. 5a, left panel). Likewise, splice site usage should also
correlate with the number of introns in a gene. In order to
maintain the same joint probability of splicing, the individual
splice sites in a gene with numerous introns should be stronger
than those in another gene with fewer introns. This tendency was
also observed, as genes with more introns have higher average
splice site usage than genes with fewer introns (Fig. 5a, right
panel). These results suggest splice site usage performs well as an
empirical measure of splice site strength; however, it has not been
well-established that splice site usage predicts whether different
types of perturbations disrupt splicing.

To test the hypothesis that splice site usage is predictive of
susceptibility to splicing perturbations, three distinct classes of
perturbations were defined: (a) cis-mutations, (b) RBP knock-
downs, and (c) drug treatment. For each analysis, exons were
sorted into sensitive and resistant categories, depending on
whether their splicing was altered by a particular perturbation. In
the case of cis-mutations, the sensitive category was defined as

0

1

2

3

4

1 2 3 4 5
Number of unique functional RBPs per exon

R
at

io
 o

f 
o

b
se

rv
ed

 t
o

 e
xp

ec
te

d
n

u
m

b
er

 o
f 

ex
o

n
s

1 1 1 1 2

0 1 3 0 1

Null hypothesis

Hotspot model Hotspot exon

= Functional splicing
factor binding event

= Non-functional splicing
factor binding event

a

b

Fig. 4 Hotspot exons depend on several RBP-binding events. a Hotspot
exons tend to rely on multiple RBPs for correct splicing. Numbers below
exons indicate how many unique RBPs are required for the splicing of the
exon. Circles of the same color represent the same RBP. b Enrichment
above expectation in the number of exons with various numbers of unique
RBPs necessary for splicing (n= 3505 binding sites). Data are presented as
mean ± SEM.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22780-2

4 NATURE COMMUNICATIONS |         (2021) 12:2756 | https://doi.org/10.1038/s41467-021-22780-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


exons with reported splice-disrupting mutations within splice
sites, outside of the critical AG/GT dinucleotides. The resistant
category contained exons whose splice site mutations were only
located in the AG/GT dinucleotides. Comparing these two
categories showed that exons which are sensitive to splicing
mutations had a lower average splice site usage than exons that
are resistant to such mutations (Fig. 5b, left panel). In the case of
RBP knockdowns, the sensitive category was composed of exons
with functional RBP binding sites (as defined above), and the
resistant category contained exons with non-functional binding
sites. These two categories also exhibited differences in splice site
usage, with exons that were sensitive to RBP knockdown having a
lower average usage (Fig. 5b, middle panel). In comparison to
mutation-sensitive exons, exons that were sensitive to RBP
knockdown had significantly lower usage (p value « 0.0001). One
possible explanation is the targets of RBPs are frequently
alternatively spliced exons; however, switch score analysis does
not support this conclusion (Fig. S5). Lastly, the relationship
between splice site usage and an exon’s susceptibility to drug
treatment was examined. Amiloride was chosen as an exemplar
because previous studies have shown that it affects splicing in a

large number of genes, some of which are involved in disease
pathways such as cancer10,24 Again, splice site usage was found to
be lower in exons that were sensitive to disruption by amiloride
treatment than those whose splicing was resistant to the
treatment (Fig. 5b, right panel). These analyses indicate that
lower splice site usage appears to be a strong predictor of hotspot
exons, which have a generalized susceptibility to splicing
perturbations.

Because of the correlation between splice site usage and
characteristics of a hotspot exon, and the fact that it is measured
from wild-type RNA-seq data, splice site usage can help
determine hotspot exons even if no variants of those exons
have been assayed for splicing disruption. We created a UCSC
Genome Browser track that reports splice site usage. Because
splice site usage can vary greatly among tissues, we report the
average usage across 19 ENCODE cell lines and limit the
reported splice sites to those with low variance (<0.001). See the
“Data Availability” section for further information.
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on either the haploinsufficiency score (left, n= 6660 exons) or the number of introns (right, n= 9558 exons) in their respective genes. Data are presented
as mean ± SEM. b Three separate analyses were performed on splice site usage. In the first case (left), exons were categorized based on the presence of a
splice site mutation reported in HGMD that lies outside of the essential AG/GT motif in canonical 5′ and 3′ splice sites (n= 3600 exons, p= 1.912e−8 for
5′SS and p= 1.414e−9 for 3’ss (one-sided Mann–Whitney test)). In the second case (middle), exons were categorized based on whether or not splicing
was affected in an ENCODE RBP knockdown study (n= 2333 exons, p < 2.2e−16 for both 5’SS and 3’SS (one-sided Mann–Whitney test)). In the last case
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often has a choice of two or more potential 3’ss, and vice versa.
The splice site that is ultimately selected can be modulated either
by enhancing the affinity for the desired site, or by repressing the
competing site(s). The enhancement of splicing events by the
suppression of competing splice sites can be found in natural
alternative splicing regulation. For example, PTBP1 normally acts
as a splicing repressor when it binds near either splice site of an
exon; however, it can also act as an enhancer when it binds near
the competing 3’ss of the flanking exon25. In the latter case,
PTBP1 may indirectly enhance splicing in the first exon by
suppressing one of its competing splice sites. We term this phe-
nomenon enhancement by suppression of competitors (ESCo).
ESCo supports the idea that neighboring sites of a particular class
(e.g., 3’ss or 5’ss) are effectively in competition with each other.
Using exonic splicing efficiency as a proxy for splice site strength,
a minigene library was constructed to measure how splicing in a
test exon can be affected by the splicing efficiency of a down-
stream flanking exon. Exons were selected from an independent
single-exon construct previously used to determine their splicing
efficiencies3. Each minigene species represents a unique pairing of
splicing efficiencies. The library was divided into groups such that
the first exon of the pair in each species of the group was identical
(Fig. 6a). This assay, therefore, measures how these test exons
splice differently when the splicing efficiency of their flanking
exons change. For example, Group 1 contains the weakest test
exon. When paired with weaker flanking exons, test exon inclu-
sion is enhanced. ESCo is more readily detected with weak exons
(Groups 1 and 2) and becomes insignificant when exons are
sufficiently strong (Groups 3–7) (Fig. 6b). Although the GBM
classifier suggests that exonic features such as splice site strength
are informative when predicting splice-disrupting variants,
flanking splice sites also influence inclusion in a predictable way.

Gradient boosting classifier determines which exons are hot-
spots. Since there are numerous patterns that describe hotspot
exons, it is important to classify them using a unified, principled
method. The GBM classifier for splice-disrupting variants is a
fitting method that combines the critical features of hotspot
exons, such as splice site usage and cis-element scores. Although
the classifier is designed to predict splice-disrupting variants, it
can also be extended to operationally define hotspot exons. For
example, in hotspot exons, the GBM classifier generally reports

higher scores for each possible exonic mutation (Fig. 7a).
Therefore, an exon is defined as a hotspot exon if more than 10%
of all possible exonic variants are predicted to disrupt splicing
(GBM score > 0.5) (Supplementary Data 2). To ensure that this
classification method remained faithful to previous results, the
analysis of functional RBPs was revisited. Exons that were con-
sidered hotspots using the GBM classifier still showed a greater
amount of functional RBPs relative to non-functional RBPs
(Fig. 7b). These results suggest that the GBM classifier is a suf-
ficient tool for determining hotspot exons.

If the results from the GBM classifier are meaningful, they
should imply that hotspot exons relate to functional outcomes. In
lieu of using functional assays, this relation could be inferred
from the way that different exons tolerate variants. For example,
if hotspot exons are important for function, they should not
tolerate variants as well as other exons. Variants discovered in the
ExAC project were used to compare tolerance among exons26.
We found that those exons classified as hotspot exons have a
significantly lower number of variants per base than those which
are non-hotspot (one-sided t test, p < 0.05, n= 3000). An exon’s
tolerance for variants could be impacted by the gene in which it is
contained. Genes with higher HI scores are less tolerant of
variants, and they largely resemble disease genes. When the list of
hotspot exons was limited only to genes with high HI scores,
these exons were still significantly less tolerant of variants (n=
1400). Hotspot exons therefore contribute to gene function, and
they are located in disease genes.

Discussion
As the cost of deep sequencing declines, the backlog of unclassified
variants continues to grow. Since up to one-third of disease-
causing variants disrupt splicing, it is crucial to determine the
splice-disrupting potential of novel variants. Numerous compu-
tational approaches have been undertaken to predict exon skip-
ping and other alternative splicing events. Some of these early
methods focused only on describing splice site sequences through
mathematical models27,28. Others focused on the impact of a
mutation on enhancer or silencer motifs (ESE/ESS) by analyzing
in vitro selection data29–31. Later, as splicing reporter assays
developed, additional approaches yielded new scores for short
sequences based on empiric data22,32,33. The GBM model devel-
oped here aggregates features from many of these approaches as
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into seven groups, corresponding to the rows of the matrix. Each matrix element is a unique species, or pairing of test exons with flanking exons. Thus, each
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well as features from whole genome annotation data, in order to
predict the effect of exonic variants on exon skipping (Fig. 1). By
performing feature selection on this model, groups of features
were prioritized according to their contribution to predictive
power. Although much attention has been paid to ranking cis-
element motifs, the motif features used contributed little predictive
power (Fig. 2). Instead, a major portion of the predictive power
was influenced by exonic features. Empiric measures of exonic
splicing strength, such as splice site usage and WT splicing out-
comes in MaPSy, are especially important features. A recently
developed neural network model that was trained on primary
sequence alone also found that its predictions largely corre-
sponded with chromatin binding states of exons34. The dom-
inance of exon-level features in predicting splice disrupting
variants led us to hypothesize the existence of hotspot exons.
Hotspot exons, which contain larger numbers of splice-disrupting
variants that could be linked to diseases, represent targetable loci
for novel therapeutics. Variants discovered in hotspot exons
through deep sequencing could be prioritized for follow-up studies
to determine their pathogenicity. Such studies, like MaPSy, would
benefit from this prioritization because they rely on multiplex
PCR. As the number of PCR amplicons rises, it becomes more
difficult to accurately measure each one. If the analysis is limited
to exons whose splicing is predicted to be affected by perturba-
tions, the precision in these downstream assays will improve.

An expedient method of identifying potential hotspot exons is
to look at the variants reported in those exons that have asso-
ciated splicing measurements. Because the GBM classifier points
to exonic features and not mutation features as the major drivers
of splicing, it is not surprising that variants in the same exon
tended to have similar effects on splicing (Fig. 3). However, some
hotspot exons may not yet have any reported splice-disrupting
variants. Since splice-disrupting variants often interfere with cis-
elements, RBP binding patterns in exons could be an alternative
supplementary approach to identifying hotspot exons. Hotspot
exons require larger numbers of functional RBP binding sites
(Fig. 4), suggesting that most of its cis-elements are essential for
exon inclusion. In addition, the more binding events an exon
depends on, the less often they will all occur in the same tran-
script, resulting in more skipping. Therefore, a weakly splicing
exon should signal that it is indeed a hotspot exon.

Splice site usage is an empiric measure of splicing strength that
is derived from RNA-seq data (Fig. 5a). Splicing strength can also
be measure by percent spliced-in (PSI), but this metric does not

distinguish between splice sites. A recent study utilizing empirical
data to interrogate the effect of mutations on splicing, found that
mutations are more likely to disrupt splicing when their wild-type
exon has an intermediate PSI level13. Consistent with this pre-
diction, splicing in exons with lower splice site usage levels are
more likely to be disrupted by mutations and other perturbations
(Fig. 5b). Moreover, the same exons that are sensitive to muta-
tions are also sensitive to drugs, which might reverse their effects
on splicing. Splice site usage or PSI levels could therefore be used
in conjunction with RBP knockdown data to identify potential
hotspot exons. Because there are multiple criteria that determine
hotspot exons, it is necessary to construct a unified method for
calling them. The GBM classifier was the most natural approach,
as it condenses many of these features into one score. When
determining hotspot exons this way, previous results remained
unaffected (Fig. 7).

Splice site usage depends on the surrounding sequence context
in the pre-mRNA transcript, not just the features of the exon. A
study using minigenes showed that similar 5’ss sometimes led to
large differences in PSI depending on the minigene used5. The
5’ss most affected tended to have intermediate PSI levels
(20–80%). The phenomenon we call Enhancement by Suppression
of Competitors also suggests that splice site usage depends on the
strength of a competing flanking splice site. In minigenes of
competing exons with various combinations of splicing effi-
ciencies, ESCo only occurred in test exons that were sufficiently
weak (Fig. 6). ESCo could be a reliable mechanism for targeting
aberrant splicing with novel therapeutics. Instead of directly
targeting an exon with a splice-disrupting variant, drugs could
target flanking exons with the intention of reducing their recog-
nition. These drugs would not be limited to single alleles as they
could indirectly target aberrant splicing for any number of var-
iants by disrupting splicing in flanking exons. Analysis of the
effect of amiloride on splicing demonstrates that a drug can
disrupt splicing in numerous exons. Oligos targeting a hotpot’s
two flanking exons could rescue mutations in hotspot exons.
Many other drugs and small molecules have also been shown to
disrupt splicing9–12. Drug discovery efforts are increasingly
focused on targeting RNA. These compounds could be rede-
ployed in precision medicine using the principle of ESCo. Splicing
targets for these drugs could be discovered by screening with deep
sequencing. If an FDA-approved drug is found to rescue a spli-
cing disorder, it could be repurposed for a fraction of the
development cost of a novel therapeutic. Conversely, when a drug
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is found to exacerbate a splicing disorder, a warning could be
placed on that drug for relevant patients. Screening drugs for
their effects on splicing will open avenues for precision medicine,
in which rare diseases could be treated at a reasonable cost.

Methods
Prediction model. HGMD variants assayed in the MaPSy study were used to train
the prediction model. Training features were calculated using in-house scripts
(Table S1). The ‘gbm’ R package with the following parameters was used to train the
model: distribution: Bernoulli, number of trees: 1000, learning rate: 0.05, interaction
depth: 3, bag fraction: 0.5, minimum number of observations in a node: 10, cross-
validation folds: 3. The additional Random Forest model was trained using the
“randomForest” R package with default parameters. 70% of the variants were used
for training and the remaining 30% for evaluation. All in-house source code for this
paper can be found at https://github.com/dtglidden/hotspot-exon-paper.

The trained GBM model outputs a value between 0 and 1 for each inputted
sample, with the value representing the model’s confidence that a given mutation
has an effect on the splicing of its host exon. A value close to 1 represents a
mutation which affects splicing with high confidence, while a value close to 0
indicates high confidence that the mutation has no effect on splicing. The
distribution of model predicted scores formed a bimodal “U-shaped” distribution
clustered around 0 and 1, so for all further analyses, a value of 0.5 was chosen as the
cutoff between splice-altering and no-effect mutations. Given the scarcity of
predictions with intermediate values, any cutoff between 0.2 and 0.8 would have
been functionally identical, but 0.5 was kept for simplicity.

The features required for the machine learning models can be broken into two
categories: genomic features and mutation features. Genomic features are those
that do not depend on the presence of any mutations, and may therefore be
calculated and stored in advance. Mutation features are precomputed for the
MaPSy alleles used to train the models. Newly submitted mutations for prediction
have their features calculated at the time of submission. The outcome variable,
allelic ratio, is calculated by the following formula (Eq. 1)

log2
mo=mi

wo=wi

� �
ð1Þ

where the subscripts o and i correspond to the output (spliced) and input
(unspliced) fractions of mRNA respectively, and m and w correspond to the
mutant and wild-type species, respectively.

RBP binding and knockdown analysis. For 35 and 31 RBPs known to affect
splicing, we obtained eCLIP binding peak data in the K562 and HepG2 cell lines,
respectively, from the ENCODE project. The file identifiers along with the corre-
sponding RBPs and cell lines for the peak files used are listed in the table below.
Data from knockdown RNA-seq experiments for these RBPs were obtained from
the Graveley lab and are also available on ENCODE (Table S2) (https://www.
encodeproject.org/awards/U41HG009889/). In order to classify which binding
peaks have evidence supporting an effect on splicing for a nearby exon, we per-
formed an integrated analysis of the eCLIP and RBP knockdown data as follows.
For the knockdown experiment of RBPi, we used rMATS to calculate differential
splicing results for the comparison between the unperturbed and RBPi-depleted
conditions35. Then, for every exon in the rMATS results, we searched for binding
peaks of RBPi within a window from the end of the upstream exon to the start of
the downstream exon. If the exon was differentially spliced at an FDR < 0.1, then
any such peaks are labeled as splice-affecting for that exon; otherwise, they are
labeled as non-splice-affecting sites.

In order to assess how binding sites are distributed across exons, we constructed
a model of the expected number of binding sites per exon through sampling of the
subset of non-splice-affecting sites. 1000 samples without replacement (n= the
number of splice-affecting sites for the cell line in question) were taken from this
set of binding sites and estimates of the expected number of sites per exon were
calculated from them. We then compared this expected distribution to the
observed distribution of splice-affecting sites in order to obtain enrichment values
for the number of exons with different amounts of splice-affecting RBP binding.

Quantification of alternative splicing through switch score. The extent to which
the exons in this analysis are alternatively spliced was assessed by calculating switch
scores for each exon. The switch score is the maximum pairwise difference in
percent-spliced-in for an exon when comparing among a set of conditions. In this
case, we calculated inclusion from RNA-seq data for 19 cell lines obtained from
ENCODE (Table S2) to serve as a proxy for assaying tissue-specific splicing events.
We used rMATS on every possible pair of cell lines to acquire each pairwise
difference in inclusion level needed to calculate the switch score.

Calculating splice site usage from RNA-seq data. The splice site usage of a 5′ or
3′ splice site is meant to estimate the proportion of transcripts from a gene that
undergo a splicing event that utilizes that particular site. To accomplish this we
analyze exon-exon junction reads obtained from mapping of RNA-seq data. For a
given splice site, there are three categories of junction reads which go into

calculating its splice site usage: (A) a read that has the splice site as one of the sides
of the junction, (B) a read that spans the splice site (i.e., the junction is between a
site that is upstream and one that is downstream of the site in question), and (C)
for a 5′ (3′) splice site, a read with a junction that has its 5′ (3′) end in the
downstream (upstream) intron. From the counts of these three classes of reads,
splice site usage is defined as A

AþBþC. In order to mitigate the corruption of this
metric by the false positive splice junctions frequently output by RNA-seq aligners,
we only considered junction reads that contained splice sites present in the
GENCODEv29 annotation. If there were multiple RNA-seq replicates for a parti-
cular cell line or condition, we collapsed the junction read counts from all replicates
before calculating splice site usages.

Identification of hotspot exons with GBM model. In order to identify all hotspot
exons in the genome, we first generated predictions from the trained GBM model
for each possible exonic mutation. We then designated those exons where greater
than 10% of all possible mutations were predicted to disrupt splicing as hotspot
exons, and all others as non-hotspot exons. Biologically, we define hotspot exons as
those which are sensitive to perturbations even outside of the canonical splice sites.
In the context of the prediction model, this definition implies that an abnormally
high proportion of all possible mutations should affect splicing, which motivated
our use of a proportion-based threshold, rather than average GBM score. The value
of 10% was chosen as it maximized the difference in the number of variants per
base in the groups above and below the cutoff while retaining as many exons as
possible. Therefore, we found it to strike a good balance between precision and
recall of hotspot exon identification.

Variants per base were calculated for each exon from mutation data collected by
ExAC according to the following formula (Eq. 2).

number of distinct observed variants in an exon

length of exon bp
� � ð2Þ

The data was downloaded from https://gnomad.broadinstitute.org/downloads.
The number of variants per base is indicative of how well an exon tolerates
mutations, with low values indicating exons that are very sensitive to perturbations.
A true hotspot exon should have a low number of variants per base, as a large
proportion of mutations would be deleterious and selected against. To validate our
approach to identifying hotspot exons and to select the best cutoff, we compared
the variants per base across those exons with a proportion of splice-altering
mutations above the cutoff (hotspot) to those below the cutoff (non-hotspot) across
a range of different cutoffs. In order to accurately compare the variants per base
across the two groups, the non-hotspot exons were down-sampled to the number
of hotspot exons. To minimize bias, the compared non-hotspot exons were selected
from the same set of genes that the hotspot exons were located in, and size-
matched as closely as possible. This analysis was performed both with and without
filtering exons by haploinsufficiency score, which was performed as follows: Exons
were assigned the HI score of the transcript they were most often transcribed in.
The median HI score of all genes was calculated (0.53). Exons with an HI score
below the median were then filtered out. Haploinsufficiency scores were
downloaded from https://github.com/HAShihab/HIPred.

Cell culture. HEK293T cells (ATCC) were cultured with Dulbecco’s Modified
Eagle Medium (DMEM)+ 10% fetal bovine serum (Invitrogen) and 1% penicillin/
streptomycin (Sigma), and incubated at 37 °C, 5% CO2. Cells were passaged at
70–90% confluence via trypsinization, and passage number was kept low. Cells
were checked periodically for mycoplasma contamination.

Drug treatment analysis. HEK293T cells were grown to >70% confluence. One
day prior to drug treatment, cell culture media was replaced with a fresh batch that
did not contain antibiotics in order to minimize the effect of the antibiotics on
splicing. Afterwards, 300 µg/mL of amiloride (Sigma) was dissolved into the media.
6 h later, total RNA was extracted using TRIzol (Invitrogen). RNA was converted
to cDNA using SuperScript IV (New England Biolabs) and analyzed by deep
sequencing (Illumina HiSeq 2500, 126-bp paired end reads, polyA+ fraction).

Minigene assay. Selected exons previously assayed with MaPSy (Table S3) were
amplified via PCR (Table S4) out of 3-exon minigene plasmids and ligated via
Gibson assembly (NEB) to create 4-exon linear minigene constructs. The upstream
flanking sequence included a CMV enhancer, promoter, and 71 bp of the Ad81
exon, and the downstream flanking sequence included ACTN1 exon 16 and a bGH
polyA tail (see “MaPSy in vivo assays” section of the “Methods” section in Soemedi
et al. (2017), for a more complete description of the library species). Two PCR
amplifications were performed on the plasmids, creating two 2-exon species to be
ligated. First, the CMV enhancer, promoter, Ad81 exon, and the test exon with
additional downstream intronic sequence were amplified as one species (library
part 1). The reverse primer included a 20 bp extension sequence for future ligation
with Gibson assembly. Second, the same test exon with addition upstream
sequence, ACTN1 exon 18, and the polyA tail were amplified as another species
(library part 2). The forward primer included the same 20 bp extension sequence
such that Gibson assembly would produce a 4-exon construct with two of the test
exons in the middle, spaced apart by sufficient intronic sequence. Ligation reactions
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were performed such that each sample contained one species from library part 1
ligated to all possible species in library part 2 (8 species per sample). Minigene
species were transfected with Lipofectamine 3000 (Invitrogen) for 24 h. Total RNA
was extracted, and spliced isoforms were measured by RT-PCR. Samples were
subject to deep sequencing (Illumina MiSeq, 150 bp paired-end reads).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
We provide three publicly available resources for further study in splicing prediction and
splice site usage. First, using our GBM model, we present splicing predictions for all
possible exonic mutations in exons with measured splice site usage (Supplementary
Data 1). Second, we provide average splice site usage data across 19 ENCODE cell lines
for splice sites with low variance in usage. These data can be viewed as a public track on
the UCSC Genome Browser (http://genome.ucsc.edu/s/dschmelt/KrasSpliceHub).
Finally, we provide a list of all exons that we classify as hotspot exons in the HEK293T
cell line (Supplementary Data 2). RNA-seq data from amiloride treatment of
HEK293T cells are available in the NCBI gene expression omnibus (GEO) under
accession GSE140786. RBP binding and knockdown data are available from the
ENCODE project (https://www.encodeproject.org/awards/U41HG009889/). The data
supporting the findings of this study are available from the corresponding authors upon
reasonable request.

Code availability
Code use for data analysis can be found at (https://github.com/dtglidden/hotspot-exon-
paper).
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