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Abstract

Precision medicine and sequence‐based clinical diagnostics seek to predict disease

risk or to identify causative variants from sequencing data. The Critical Assessment of

Genome Interpretation (CAGI) is a community experiment consisting of genotype‐
phenotype prediction challenges; participants build models, undergo assessment, and

share key findings. In the past, few CAGI challenges have addressed the impact of

sequence variants on splicing. In CAGI5, two challenges (Vex‐seq and MaPSY)

involved prediction of the effect of variants, primarily single‐nucleotide changes, on

splicing. Although there are significant differences between these two challenges,

both involved prediction of results from high‐throughput exon inclusion assays. Here,

we discuss the methods used to predict the impact of these variants on splicing, their

performance, strengths, and weaknesses, and prospects for predicting the impact of

sequence variation on splicing and disease phenotypes.
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1 | INTRODUCTION

A significant fraction of deleterious mutations in protein‐coding genes

act through an effect on splicing. Many of these mutations directly

impact canonical splice‐site dinucleotides (GT at the 5′ splice site and

AG at the 3′ splice site) and are routinely scored as splicing mutations.

Mutations within the splice‐site consensus region (up to three exon

nucleotides, and several intron nucleotides, including the canonical

dinucleotides) can also have a large effect on splicing. Estimates of the

fraction of deleterious mutations in this class range from 9% (Human

Gene Mutation Database, Stenson et al., 2017) to 22% (MacArthur

et al., 2012). Such mutations are reliably assessed by methods such as

MaxEnt (Yeo & Burge, 2004) or information theory (Rogan,

Svojanovsky, & Leeder, 2003), and are often included in assessment

of potential impact. An even larger set of variants act through auxiliary

splicing signals in the exon or flanking introns (Cheung et al., 2019;

Ladd & Cooper, 2002; Li et al., 2016,), and as many as 37% of GWAS

variants are potentially associated with an effect on splicing (Pal, Yu,

Mount, & Moult, 2015). Although it has been known for some time

that mutations in auxiliary splicing signals can affect splicing (e.g.,

Cartegni, Chew, & Krainer, 2002, Yang, Swaminathan, Martin, &

Sharan, 2003), they are often ignored when assessing the potential

impact of mutations, and the impact of exonic mutations resulting in

monogenic disease through an effect on splicing is often attributed to

their dual identity as missense mutations (e.g. Zucker et al., 2011).

Recent work with high‐throughput assays has identified variants

affecting splicing and has established the importance of auxiliary

splicing signals. Soemedi et al. (2017) observe that 10% of disease‐
causing exonic mutations alter splicing in a massively parallel splicing

assay (MaPSy). An independent high‐throughput assessment of

27,733 human variants (Cheung et al., 2019) from ExAC (Lek et al.,

2016) found that 3.8% of rare variants had a high impact on splicing.

Eighty‐three percent of these lie outside of the splice‐site dinucleo-

tides and 62% lie outside of the splice‐site consensus region (Cheung

et al., 2019), and therefore, in auxiliary splicing signals. Rosenberg,

Patwardhan, Shendure, and Seelig (2015) measured the splicing of

over 2 million synthetic minigenes incorporating random sequence in

splice‐site competition assays, and found that the majority of

hexamer sequence motifs act as auxiliary splicing signals. Such

high‐throughput assays demonstrate that many rare variants have

the potential to impact splicing. These same assays also provide data

sets that facilitate the training of computational tools to predict the

impact of variants on splicing.

Mutations in auxiliary splicing signals can alter splicing and

therefore, cause disease. Indeed, mutations in auxiliary splicing

signals were among the very first mutations with described effects on

splicing (Orkin et al., 1982; Mount & Steitz, 1983). However, the

identification of mutations in auxiliary splicing signals is not standard

because of various factors that make variants affecting auxiliary

splicing signals harder to predict relative to splice‐site dinucleotides

and their surrounding bases, which are by definition fixed in position,

and which have greater information content. Two CAGI5 challenges

(Vex‐seq and MaPSy) directly assess the ability to predict the impact

of sequence variants on splicing.

1.1 | Description of the Vex‐Seq challenge

The Vex‐Seq (variant exon sequencing) method (Adamson, Zhan, &

Graveley, 2018) is an in vivo splicing assay that exploits a barcode to

track specific variants in a high‐throughput assay of exon inclusion

(see Figure 1), using a unique molecular identifier to track PCR

duplicates. Two cell lines (K562 and HepG2) were assayed for each

construct. PSI (“percent spliced in” or Ψ; 100 times the ratio between

inclusion reads and the sum of inclusion reads and exclusion reads)

was calculated from RNA‐seq data for each allele, and delta‐Ψ (ΔΨ;

the difference between Ψ for the variant and Ψ for the reference)

was reported for a training set. Predictors were asked to predict

delta‐Ψ for the test set of 1,098 variants. Variants were located

throughout the affected exon, in its splice sites, and up to 100 nt into

flanking introns.

1.2 | Description of the MaPSy challenge

The massively parallel‐splicing assay (MaPSy, Soemedi et al., 2017)

approach was used to screen 797 reported exonic disease

mutations. MaPSy involves a comparison of the ratio of mutant

and wild‐type (wt) alleles before (“input”) and after (“output”) a

high‐throughput splicing assay (see Figure 1). Assays were both “in

vivo”, via transfection of HEK cells in culture, or “in vitro”, in a

nuclear extract, using a mini‐gene system. The challenge is to

predict the degree to which a given variant causes changes in

splicing. For the purposes of this challenge, variants were

categorized as exonic splicing mutations (ESMs) if they both

changed the allelic ratio by 1.5‐fold or more and passed a two‐
sided Fisher’s exact test (FET) with a false discovery rate (FDR) of

5% both in vivo and in vitro. Thus, the MaPSy challenge, unlike

Vex‐seq, was formulated as classification task. Predictors were

asked to provide a probability between 0 and 1 that a particular

variant was classified as an ESM.

1.3 | A comparison of these challenges

Although these two challenges are essentially similar in that they

measure the effect of sequence variants on exon inclusion in an

MaPSy, there are important differences.

(a) The MaPSy challenge is inherently categorical in that predictors

were asked to say whether or not a particular variant was an

exonic splicing mutation. In contrast, the Vex‐seq challenge

asked for a quantitative measure (ΔΨ) of the impact of the

variant on splicing.

(b) The MaPSy challenge is limited to exonic variants, because the

variant itself is used to distinguish variant from reference

sequences in both input and output. In contrast, because the
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Vex‐seq challenge exploits barcodes in the downstream exon to

tag products, intronic variants can be assayed and were included.

(c) The Vex‐seq challenge compares the observed support for exon

inclusion isoforms with the support for exon‐skipping isoforms

and ignores all other isoforms. In contrast, the MaPSy challenge

evaluates splicing efficiency based solely on the number of

correctly spliced (inclusion isoform) reads; all other outcomes

(exon skipping, no splicing, RNA degradation) are treated equally

because they do not result in reads that are counted.

(d) The MaPSy challenge is designed to measure damaging

mutations that cause skipping of a constitutive exon whereas

the Vex‐seq challenge is designed to measure the rate of

inclusion of an alternatively spliced exon.

2 | METHODS

2.1 | Vex‐seq data

Training data and answers were provided as ΔΨ and mean Ψ of the

HepG2 cell assay.

The evaluation metrics below were chosen based on exploratory

analysis in which all predictions were compared, to one another and

to the “answers,” using heatmaps (not shown).

2.2 | Classification of Vex‐seq variants

To see whether specific prediction models performed better on variants

affecting particular locations relative to exon boundaries, the 1,098

variants were divided into three categories (intron, exon, or splice‐site
variants; splice sites included three exon and eight intron nucleotides

immediately adjacent to the splice site). Specific variants (222 of 1,098)

were designated “Hard” if the root‐mean square deviation (RMSD) for

all predictions of the effect of that variant exceeded 13.4, the standard

deviation of true ΔΨ values for all variants. Finally, variants were

categorized as positive (71 variants), neutral (947 variants), or negative

(80 variants) according to whether their observed ΔΨ value differed

from the mean value of −1.84 by more than a standard deviation.

2.3 | MaPSy data

MaPSy data provided consists of read counts from input DNA and

from correctly spliced cDNA.

2.4 | MaPSy predictions

Predictors were asked to provide predictions of the count of reads

for in vivo wt spliced, in vivo mutant spliced, in vitro wt spliced, and in

vitro mutant; predictions of the ratios observed, the standard

deviation for this ratio (as a measure of uncertainty of the

prediction), ESM (the probability that this variant is an ESM), and

the standard deviation of the ESM.

2.5 | MaPSy exploratory data analysis

Count values for the “answers” were compared using two two‐by‐two

tables of values (wt spliced, mutant spliced; wt input and mutant

F IGURE 1 Schematic comparison of the MaPSy and Vex‐seq methods. Both methods measure the efficiency of exon inclusion using
high‐throughput sequencing of PCR products generated by flanking primers (light green) in shared flanking exons. In the case of the Vex‐seq
challenge (top), inclusion of exons from wild‐type and mutant clones are distinguished by barcodes (BW and BM, respectively); this allows the

efficiency of exon inclusion to be measured for mutations that reside in intron sequence not present in the final PCR product. In the case of the
MaPSy challenge (bottom), effects of a mutant on splicing are inferred by comparing the ratio of sequencing counts derived from wild‐type (b)
and mutant (d) included exons. This ratio (b/d) is compared to the ratio observed for input DNA (a/c). For the in vivo assay, the sequence pairs

were incorporated into three‐exon minigenes and transfected into HEK293 cells. For the in vitro assay, the library was incorporated into
two‐exon constructs and incubated in HeLa nuclear extract so that splicing could occur. MaPSy, massively parallel‐splicing assay; PCR,
polymerase chain reaction; Vex‐seq, variant exon sequencing
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input), one table for the in vivo experiment and one table for the in

vitro experiment. Each was used to calculate p values using one‐sided
FETs. All predictions (the probability, between 0 and 1, that a

particular variant was classified as an ESM) were then compared to

these four p values, and to six composite values: (a) the minimum of

the two in vitro p values, (b) the minimum of the two in vivo p values,

(c) the maximum of the mutant p values, (d) the maximum of the wt p

values, (e) the maximum of the two minima (a and b above) and the

minimum of the two maxima (c and d above). In addition, all

predictions were compared, to one another and to the “answers,”

using heatmaps (not shown). The evaluations below were chosen

based on this exploratory analysis.

2.6 | MaPSy evaluations

Predictions (ESM probabilities) were evaluated using several distinct

“answers.”

“Official”: The answers as provided by the data provider, which

“passed the 1.5‐fold change and a two‐sided FET adjusted with 5%

FDR both in vitro and in vivo.” Forty‐four of 796 variants were

considered “official” ESMs.

“Consistent”: Cases where the in vivo and in vitro assays indicate

differential directional effects on splicing were removed from the

official set of ESMs. Twent‐six variants were considered “consistent”

ESMs. Because the number of official ESMs that are not consistent is

surprisingly large (13 in the training set), predictors were instructed

that “those should not be regarded as ESMs and be ignored.”

“Mutant only”: Only cases in the consistent set in which the

mutant resulted in reduced splicing both in vivo and in vitro (19

variants) were considered consistent exonic splicing mutations with

the expected effect on splicing.

In addition, FET (a one‐sided test of the hypothesis that the

mutant affects splicing) was used without a fold‐change criterion to

generate four additional sets of ESMs from the counts.

“FET‐vivo‐1e−02”—ESM if FET for the mutant case in vivo is less

than 10−2

“FET‐vitro‐1e−02”—ESM if FET for the mutant case in vitro is less

than 5 × 10−6

“FET‐vivo‐5e−06”—ESM if FET for the mutant case in vivo is less

than 10−2

“FET‐vitro‐5e−06”—ESM if FET for the mutant case in vitro is less

than 5 × 10−6

Predictions were evaluated relative to these seven sets of ESMs

by three measures: overall agreement, area under a receiver

operating characteristic (ROC) curve, and odds ratio. Overall

agreement was calculated as (1−class) × (1−prediction) + (class) ×

(prediction). Area under ROC curve was calculated using the R

package ROCR. The odds ratio was calculated as described below.

2.7 | Odds ratio

An odds ratio was calculated as (a/c)/(b/d), where a is the number of

correctly predicted ESMs; b is the number of variants predicted to be

ESMs but were not ESMs; c is the count of ESMs that were

not predicted; and d are cases that were neither predicted nor

ESMs. These values were calculated as a: (ESM) × (Pred); b:

(1−ESM) × (Pred); c: (ESM) × (1−pred); and d: (1−ESM) × (1−pred),

where ESM is the status of the variant (1 or 0) and Pred is the

prediction probability.

2.8 | Data

Data were made available by the data providers Brent Graveley

(Vex‐seq) and Will Fairbrother (MaPSy) subject to the CAGI data use

agreement (see https://genomeinterpretation.org/data‐use‐agreement).

3 | RESULTS

3.1 | VexSeq predictions

The predictors are listed in Table 1a, which briefly summarizes the

methods used by each team for the Vex‐seq challenge. Because most

predictors relied heavily on subsidiary methods and data sources for

features, subsidiary features are listed separately in Table 1b.,

3.2 | Performance of VexSeq predictions

Predictions were evaluated by correlations with the ΔΨ values

provided (Tables 2a–c) and by calculation of RMSD (Table 2d).

Because the ΔΨ values submitted by team 3 were generally small,

they were multiplied by 100 before calculation of RMSD (correcting

for assumed confusion between proportion and percentage).

Remarkably, predictions from team 3 performed best by all

four measures, in every classification of variants (all variants,

intronic variants, exonic variants, splice‐site variants, and hard

cases), and when predictions were scored categorically (as

positive, neutral or negative). The classification of variants

revealed some interesting features of the predictions. Groups 3

and 6 stand out as far superior to the others with regard to intron

variants in particular. Group 2 performed second‐best overall and
was particularly strong on variants classified as hard. As expected,

splice‐site variants generally had a much larger effect (ΔΨ RMSD

of about 25, vs. about 10 for exon and intron variants).

Interestingly, some predictions (e.g., team 6) appeared to perform

better by correlation measures than by RMSD, suggesting that

whereas the direction of the effect was correctly assessed, the

degree was not. Conversely, team 2 performed relatively better on

splice sites by the measure of RMSD.

3.3 | MaPSy predictions

The predictors are listed in Table 3, which briefly summarizes the

methods each used for the MaPSy challenge. Because most

predictors relied heavily on subsidiary methods for features, all

subsidiary features, and citations for secondary methods and data

sources, are listed separately (Table 1b).
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TABLE 1a Summary of prediction methods on the Vex‐seq challenge

Group code Summary of Vex‐seq method. Citations for subsidiary methods and data sources are listed below the table

1 JiLin Machine learning (SVM) on base substitution by position. 1.2 differed from 1.1 in that the sequence was not included, only

variant position relative to exon boundaries.

2 Sun Yat‐sen Machine learning (SVM) on secondary features from the DDIG‐SN and SilVA, and from the CADD server. ANNOVAR was used to

extract ΔΨ values from SPANR. Additional features from a variety of sources. A greedy feature selection strategy was used to find the

most effective features.

3 Munich A novel, compositional, model (MMSplice) was introduced in which five distinct models were used for intron adjacent to the 3′ splice site,
the 3′ splice site, the exon, the 5′ splice site, and intron adjacent to the 5′ splice site. These were separately scored and used to

generate a composite exon‐skipping score. The splice‐site models were obtained using convolutional neural network models. The exon

and intron models were based on data from MPRA. Distinct models were used for intron adjacent to the 3′ splice site and adjacent to

the 5′ splice site. Vex‐seq training data were used for module assembly. 3.2 was generated from the sole submission (designated 3.1) by

multiplying all values by 100.

4 Berkeley A random forest regression model was trained using a large number of features, including total allele frequency from the

gnomAD database of allele frequencies, MaxEntScan, and many binding site models for specific known splicing regulators.

5 Bar Ilan Training was done on features listed by Soemedi et al. (2017), plus additional features (change in strength of ESE and ESS features, and

output from the Ex‐skip web site.) Specific submissions varied as follows: 5.1: “optimal mode”—Using Decision Tree. 5.2: “equal

distribution mode”—The classification was adjusted to reflect the class frequencies in the test set. 5.3: Random Forest was used in the

optimal mode. 5.4: Linear regression of features was used to directly predict ΔΨ values. 5.5: Only the class assignment is provided with

no numeric scores.

6 NHGRI Spliceport and SPANR values were used. A weighted linear model was used to predict logit‐transformed, thresholded Ψ values as

a function of SplicePort acceptor and donor scores, as well as logit‐transformed, thresholded values of Ψ provided by the

SPANR tool. 5.2 used a multiple linear regression model of experimental ΔΨ values as a function of SPANR predictions of ΔΨ
and of changes in SplicePort scores induced by the presence of a variant.

Note: Full group names: HILab‐JLU‐001, JiLin University, China; biomed‐ai‐th2, Sun Yat‐sen University, China; delta_PSI, Technical University of Munich,

I12, Germany, DG; berkeley_bioe_26419652, Univ. of California, Berkeley, USA; Biu, Bar Ilan Univ. in collaboration with the Hebrew University of

Jerusalem, Israel; NHGRI_Elnitski, National Human Genome Research Institute, USA.

Abbreviatons: MPRA, massively parallel reporter assay; SVM, support vector machine.

TABLE 1b Subsidiary methods and data sets

Several of the predictors incorporated the results of published methods and data sources (referred to here as subsidiary methods).

ANNOVAR is a software tool that functionally annotates genetic variants based on a large set of subsidiary tools and databases (Wang, Li, &

Hakonarson, 2010 and annovar.openbioinformatics.org/).

CADD (Combined Annotation‐Dependent Depletion) is a method for integrating many diverse annotations into a single measure (C score) for each

variant. (see Kircher et al., 2014; Rentzsch, Witten, Cooper, Shendure, & Kircher, 2019, and cadd.gs.washington.edu/).

DDIN‐SN is a support vector machine (SVM) model to discriminate disease‐causing synonymous variants trained and evaluated on nearly 900 disease‐
causing variants, incorporating features from the SPIDEX database (Livingstone et al., 2017 and sparks‐lab.org/ddig).

DSSP (Deep Splice‐Site Prediction system) is a deep neural network‐based model that calculates 5′ and 3′ splice‐site probability, respectively from a

140‐length base sequence, in which the middle nucleotides represent the consensus sequence. It was trained with nearly 3,000 true and 30,000 false

splice sites (Naito, 2018 and omictools.com/dssp‐2‐tool).

EX‐SKIP is simple utility that compares the ESE/ESS profile of a wt and a mutated allele to quickly determine which exonic variant has the highest

chance to skip this exon (Raponi et al., 2011 and ex‐skip.img.cas.cz/).

gnomAD (Genome Aggregation Database) aggregates exome and genome sequencing data from a wide variety of large scale sequencing projects,

currently 125,748 exome sequences and 15,708 whole‐genome sequences from unrelated individuals (gnomad.broadinstitute.org/ and Lek et al.,

2016).

MaxEntScan (Yeo & Burge, 2004) provides MaxEnt scores based on maximum entropy models that may include dependencies between nonadjacent

as well as adjacent positions. Specifically, MaxEntScan provides a score for 5′ splice sites (donor sites) based on nine positions (−3 through +6) and 3′
splice sites (acceptor sites) based on 23 positions (−20 through +3; genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html).

MPRA (massively parallel reporter assay) describes the splicing patterns of over two million synthetic minigenes, including degenerate subsequences

totaling over 100,000,000 bases of variation (Rosenberg et al., 2015).

SilVA (the Silent Variant Analyzer) is a tool for the automated harmfulness prediction of synonymous (silent) mutations within the human genome

based on a number of features, including conservation, codon usage, splice sites, splicing enhancers and suppressors, and messenger RNA‐folding
free energy (Buske, Manickaraj, Mital, Ray, & Brudno, 2013 and compbio.cs.toronto.edu/silva/).

SPANR (splicing‐based analysis of variants) is described by Xiong et al. (2015) as a computational tool that estimates Ψ based on 1,393 sequence

features and observed values of Ψ for human exons and ΔΨ values for 650,000 variants (tools.genes.toronto.edu/).

SPIDEX is a precomputed index of SPANR scores for the human genome.

Spliceport provides a score for the strength of splice sites based on a feature‐generation algorithm for classification of GT and AG dinucleotides as

splice sites or not. (Dogan, Islamaj, Getoor, Wilbur, & Mount, 2007).
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The MaPSy prediction challenge consisted of assigning prob-

abilities that a particular mutation is an exonic splicing mutation

(ESM). In other words, it was set up as a classification task, and the

“answers” classified every variant with a 1 or a 0. However, this

classification is based on four count values from the in vivo assay

and four count values from the in vitro assay (see Figure 1). Thus,

it is possible to rank the confidence with which each variant is

assigned its status, and to compare predictions to p values

calculated directly from the counts, and to composite values

based on those p values. On the basis of this initial exploratory

data analysis, several distinct “answers” were used, in addition to

the “official” answer, for evaluation.

3.4 | MaPSy predictions were evaluated using
several distinct “answers”

“Official”— The answers as provided by the data provider, which

“passed the 1.5‐fold change and a two‐sided FET adjusted with 5%

FDR both in vitro and in vivo.” Forty‐four of 796 variants were

considered “official” ESMs.

“Consistent”— Cases where the in vivo and in vitro assays indicate

differential directional effects on splicing were removed from the official

set of ESMs. Twenty‐six variants were considered “consistent” ESMs.

“Mutant only”— Only cases in the consistent set in which

the mutant resulted in reduced splicing both in vivo and in vitro

(19 variants) were considered consistent exonic splicing mutations

with the expected effect on splicing.

In addition, FET (a one‐sided test of the hypothesis that the

mutant affects splicing) was used without a fold‐change criterion to

generate four additional sets of ESMs from the counts.

“FET‐vivo‐1e−02”— ESM if FET for the mutant case in vivo is less

than 10−2

“FET‐vitro‐1e−02”— ESM if FET for the mutant case in vitro is

less than 5 × 10−6

“FET‐vivo‐5e−06”— ESM if FET for the mutant case in vivo is less

than 10−2

“FET‐vitro‐5e−06”— ESM if FET for the mutant case in vitro is

less than 5 × 10−6

Predictions were evaluated relative to these seven sets of ESMs

by two measures: overall agreement (calculated as [1–class] × [1–

prediction] + [class] × [prediction]; Table 4a), and area under an ROC

TABLE 2 Summary of Vex‐seq prediction performance

1.1 1.2 2.1 2.2 2.3 3.1 4.1 5.1 5.2 5.3 5.4 5.5 6.1 6.2 Ave

(a) Pearson correlation coefficients per group

All 0.29 0.13 0.57 0.53 0.55 0.67 0.43 0.07 0.10 0.49 0.33 0.07 0.50 0.45 –

Exon 0.12 0.16 0.26 0.12 0.19 0.41 0.02 −0.15 −0.13 0.10 0.06 −0.14 0.26 0.26 –

Intron 0.01 0.03 0.11 0.00 0.07 0.33 0.11 0.02 −0.01 0.07 0.08 0.04 0.20 0.16 –

SS 0.12 0.16 0.26 0.12 0.19 0.41 0.02 −0.15 −0.13 0.10 0.06 −0.14 0.26 0.26 –

Hard 0.42 0.19 0.61 0.59 0.62 0.72 0.51 0.09 0.10 0.55 0.42 0.10 0.51 0.44 –

Categ. 0.11 0.09 0.24 0.18 0.22 0.32 0.12 −0.02 0.06 0.17 0.10 0.01 0.27 0.25 –

(b) Pearson correlation coefficients—direction (sign) only

All 0.07 0.10 0.10 0.04 0.09 0.25 0.25 0.03 −0.08 −0.06 0.06 0.06 −0.03 0.24 –

Exon 0.06 0.17 0.12 0.04 0.07 0.26 0.28 0.03 −0.13 −0.10 0.05 0.03 −0.12 0.22 –

Intron 0.03 0.02 0.01 −0.06 0.05 0.18 0.17 −0.03 −0.04 −0.03 0.01 0.03 0.03 0.18 –

SS 0.40 −0.09 0.79 0.80 0.82 0.86 0.60 0.30 0.29 0.73 0.60 0.32 0.61 0.53 –

Hard 0.12 0.12 0.37 0.25 0.23 0.48 0.15 −0.09 −0.08 0.12 0.14 0.02 0.37 0.35 –

(c) Spearman correlation coefficients per group

All 0.15 0.15 0.20 0.12 0.18 0.38 0.07 −0.10 −0.08 0.14 0.12 0.00 0.32 0.29 –

Exon 0.15 0.20 0.16 0.08 0.13 0.41 0.00 −0.19 −0.17 0.08 0.05 −0.13 0.28 0.26 –

Intron 0.09 0.07 0.06 −0.04 0.05 0.24 0.01 −0.07 −0.08 0.02 0.06 0.03 0.22 0.17 –

SS 0.15 0.20 0.16 0.08 0.13 0.41 0.00 −0.19 −0.17 0.08 0.05 −0.13 0.28 0.26 –

Hard 0.24 0.18 0.45 0.30 0.44 0.60 0.31 −0.05 −0.03 0.31 0.23 0.05 0.49 0.46 –

(d) RMSD variation per group

All 13.0 13.5 11.3 11.5 11.4 9.9 12.3 20.3 20.1 11.9 13.6 13.5 11.7 12.0 13.4

Exon 12.6 12.5 10.9 11.1 10.8 10.1 11.8 20.6 20.1 11.0 13.3 12.5 11.3 11.3 12.4

Intron 10.7 9.8 10.1 10.2 10.4 9.3 10.2 15.6 16.3 9.8 11.4 9.6 9.4 9.5 9.7

SS 26.0 30.5 17.4 17.3 16.2 14.5 22.4 30.3 32.6 22.1 24.0 30.6 22.9 24.6 30.1

Hard 25.8 28.3 22.1 22.4 21.5 19.1 23.8 40.5 40.2 24.1 25.7 28.5 24.1 25.0 28.1

Abbreviations: RMSD, root‐mean square deviation; SS, splice site
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TABLE 3 Summary of MaPSy method

Group code Summary of MaPSy method

1. Bar Ilan (Group 5 of the Vex‐seq challenge). Training (WEKA) on literature features listed by Soemedi et al. (2017), plus additional features

(change in strength of ESE and ESS features, and output from the Ex‐skip web site), plus about 20 features that were extracted

from a model trained on a previous database of ESM that they compiled. Specific submissions varied as follows: 1.1: Logistic

regression on literature features, adding the results of the prediction based on the database as an additional feature; 1.2: Logistic

regression on Literature features only; 1.3: Logistic regression on all features compiled from both literature and database; 1.4:

Decision tree on literature features, adding the results of database as an additional feature; 1.5: Decision tree using literature only;

1.6: Decision tree on all features; 1.7 Majority vote on submissions 1–3.

2. Bologna A Random Forest Classifier (RFC) was trained on a subset of features extracted from Soemedi et al. (2017) and including mutation‐,
exon‐ and gene‐level descriptors, scaled between 0 and 1, positively correlated with ESM. A convolutional neural network (CNN)

was applied directly to the 170‐mer sequences. The final ESM output is the average of the RFC and CNN outputs.

3. Tokyo CNNs were used to learn sequence information. Random forest, XGBoost, and logistic or linear regression were trained on a large

number of features, including MaxEntScan, ESRseq, and DSSP. Then, stacked generalization with logistic regression was used to

combine these.

4. Munich (Group 3 of the Vex‐seq challenge). A novel, compositional model was introduced in which the two splice sites, the intron. and the

exon, were separately scored, followed by a composite splicing efficiency score. The splice‐site models were obtained using

convolutional neural network models. The exon and intron models were based based on data from MPRA. Distinct models were

used for intron adjacent to the 3′ splice site and adjacent to the 5′ splice site. MaPSy training data were used for module assembly.

5. Toronto Features were MaxEntScan, a neural network trained to recognize exon boundaries from sequence, hexamer scores from MPRA

and ESS and ESE motifs. Submissions 5.1 and 5.2 differed in the model architectures.

Note: Full group names: Biu: Bar Ilan Univ., in collaboration with the Hebrew University of Jerusalem; BolognaBiocomputing, University of Bologna, Italy;

TN, The University of Tokyo, Japan; delta_PSI (ΔΨ), Technical University of Munich, I12, Germany, DG; University of Toronto, Canada.

Abbreviations: DSSP, Deep Splice‐Site Prediction system; ESE, exonic splicing enhancer; ESM, exonic splicing mutation; ESS, exonic splicing silencer;

MaPSY, massively parallel‐splicing assay; MPRA, massively parallel reporter assay.

TABLE 4 Evaluation of MaPSy predictions

1.1 1.2 1.3 1.4 1.5 1.6 1.7 2 3 4 5.1 5.2

(a) Overall agreement between different answers and prediction (see text)

Official 0.702 0.820 0.708 0.773 0.707 0.817 0.743 0.715 0.653 0.916 0.914 0.902

Consistent 0.718 0.836 0.722 0.786 0.720 0.832 0.759 0.732 0.666 0.932 0.931 0.918

Mutant only 0.724 0.846 0.731 0.782 0.714 0.830 0.767 0.742 0.664 0.943 0.944 0.931

FET‐vivo‐1e−02 0.674 0.774 0.681 0.703 0.651 0.755 0.710 0.677 0.632 0.856 0.859 0.851

FET‐vitro‐1e−02 0.654 0.705 0.641 0.644 0.612 0.674 0.667 0.626 0.624 0.745 0.749 0.745

FET‐vivo‐5e−06 0.697 0.812 0.705 0.748 0.683 0.792 0.738 0.704 0.645 0.903 0.906 0.895

FET‐vitro‐5e−06 0.704 0.796 0.700 0.730 0.677 0.763 0.733 0.693 0.652 0.867 0.871 0.862

(b) Area under the curve (AUC) for ROC curves (see text)

Official 0.466 0.489 0.470 0.531 0.550 0.613 0.466 0.334 0.594 0.692 0.638 0.618

Consistent 0.657 0.654 0.589 0.547 0.610 0.681 0.631 0.447 0.835 0.794 0.756 0.698

Mutant only 0.699 0.700 0.648 0.438 0.518 0.664 0.703 0.482 0.807 0.762 0.726 0.701

FETvivo1e02 0.484 0.487 0.493 0.439 0.457 0.535 0.488 0.379 0.532 0.659 0.647 0.664

FETvitro1e02 0.465 0.486 0.486 0.469 0.467 0.539 0.474 0.316 0.531 0.700 0.647 0.676

FETvivo5e06 0.628 0.616 0.583 0.485 0.502 0.517 0.614 0.484 0.675 0.684 0.673 0.654

FETvitro5e06 0.655 0.633 0.595 0.488 0.517 0.502 0.642 0.458 0.691 0.753 0.699 0.692

(c) Odds ratio (see text)

Official 1.00 1.02 0.84 1.48 1.50 2.15 0.94 0.50 1.52 2.15 1.85 1.31

Consistent 1.71 1.51 1.18 2.00 2.36 3.47 1.44 0.81 2.75 2.87 2.55 1.80

Mutant only 2.12 1.83 1.65 0.62 1.13 2.01 1.83 0.95 2.75 2.04 3.06 2.23

Note: Bold values indicate the maximum score for each answer.

Abbreviations: FET, Fisher’s exact test; ROC, receiver operating characteristic.
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curve (Table 4b and Figure 2). Finally, an odds ratio was calculated to

measure the association between predictions and the “official,”

“consistent,” and “mutant only” “answers” (Table 4c).

All predictors, without exception, and by all five measures, did

better on the consistent ESMs than on the official ESMs, and the rank

order of prediction scores was similar (Table 4). This is in line with

the instruction in the challenge that inconsistent results in the

training set should be ignored. Thus, the “consistent” set should be

regarded as definitive. For this set, groups 3 and 4 performed best

(depending on the measure), with group 5 as a close third.

When ESMs were limited to consistent cases where the mutation

reduces inclusion (as would be expected for a true exonic splicing

mutation in a constitutive exon), groups 3–5 again performed best

(which varied by the measure used). When an odds ratio was calculated

(Table 4c), group 1.6 (Bar Ilan, decision tree) performed best.

4 | DISCUSSION

4.1 | Decomposition based on variant location
likely improves predictions

In the Vex‐seq challenge, predictions from group 3 (“ΔΨ”, Munich)

performed best by all measures and in every classification of variants.

In the MaPSy challenge, the same group (4 in this case), performed

best on the “official” ESMs by all measures, and best on “consistent”

ESMs by the “overall agreement” criterion. While other aspects of

their model could account for this superior performance, one unique

feature of their model (MMsplice; Cheng et al., 2019) is the

decomposition of sequence surrounding alternatively spliced exons

into five distinct regions (upstream intron, acceptor site, exon, donor

site, and downstream intron), each of which was evaluated by a

distinct neural network. Significantly, this division mirrors the known

biochemical mechanisms of exon definition, in which distinct factors

bind to messenger RNA precursors to initiate splicing (Black, 2003;

Fu & Ares, 2014; Lee & Rio, 2015). Another important point, which

was made by Rosenberg et al. (2015), is that the MPRA data on which

MMsplice was trained was based on an alternative splice‐site assay

(local competition), but applies well to this exon inclusion assay,

“suggesting a universal mechanism.”

4.2 | PSI versus logit PSI

Although the Vex‐seq challenge explicitly asked for predictions of

ΔΨ, this measure may not directly reflect the strength of splicing

signals, which are likely to range from well below what leads to

complete exclusion to well above what is sufficient to promote full

inclusion. For example, a change of Ψ from 99 to 98 (ΔΨ = −1) is a

two‐fold increase in the amount of skipping and is likely to reflect a

much bigger change in the strength of splicing signals than a change

in Ψ from 51 to 49 (ΔΨ = −2). Several of the groups, including the

Munich group, used logit(Ψ) rather than Ψ in their analysis for the

Vex‐seq challenge and then converted the difference back to Ψ to

calculate ΔΨ. It is likely that logit(Ψ) is a better space in which to

evaluate the effect of splicing variants.

4.3 | Performance based on location of variants

The classification of variants according to their location (intron, exon,

and splice site) revealed significant differences between predictors. The

core splice‐site consensus regions have been well‐studied for many

years, and our ability to evaluate the impact of mutations within these

sequences is considered quite high. In particular, MaxEntScan (Yeo &

Burge, 2004) has been the standard. It is, therefore, surprising that

performance on this subset of the Vex‐seq challenge was not better, and

that groups varied as much as they do in their performance. However,

when only the direction of the effect of each variant was considered

(Table 2b), the correlation between predictions and observations was

notably higher for splice sites (0.86) than overall (0.25).

On the subset of the Vex‐seq challenge represented by intronic

mutations, two groups (3 and 6) stood out. In fact, the other groups did

less well than a baseline predictor that simply assigned the mean ΔΨ to

every variant. This difference in performance likely reflects the fact that

most of the subsidiary features used by most groups are exonic features.

4.4 | Prospects

One goal of the CAGI challenges is to address the goals of precision

medicine by providing reliable estimates of the probability that a given

variant is pathogenic. However, reliable computational predictions of

F IGURE 2 Receiver operating characteristic curves for MaPSy
predictors on the “consistent” set of ESMs. Each point on the curve
reflects a different threshold value for the ESM probability, from

which true positive rate (proportion of actual ESMs whose assigned
probability is above that threshold) and false positive rate
(proportion of actual ESMs whose assigned probability is above that

threshold) are calculated. The area under these curves is a measure
of the quality of the prediction; the five predictions with the greatest
area under these curves (Table 4c) are shown
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the results of an in vivo splicing assay cannot directly imply clinical

significance, because the splicing assay itself does not perfectly predict

clinical results; Soemedi et al. (2017) report an 81% concordance rate

with splicing in patient tissue. Furthermore, the disease impact of

splicing variants is dependent on the relationship between the degree of

loss of function in a gene and the disease phenotype; this varies

between genes, but can be estimated from other partial loss‐of‐function
alleles. Despite these problems, we can provide a measure of the

association between prediction and the results of a high‐throughput
assay in the form of an odds ratio, which can be used as one step in a

chain of Bayesian inference of the probability of clinical significance

(Tavtigian et al., 2018). Table 4c presents the odds ratio associated with

each of the MaPSy predictions.

A related concern is that these assays do not fully capture the

context within which variants occur, in that sequences outside of the

region tested may influence splicing. A large scale analysis of

ENCODE data (Kim et al., 2017) revealed a class of splicing events

that these authors referred to as “local slowpokes,” whose splicing is

dependent upon an enhancing effect of neighboring splicing events

typically not included in splicing reporter assays. A recent study of

splicing prediction from primary sequence with deep learning

(Jaganathan, Panagiotopoulou, & McRae, 2019) compared the

performance when windows of different size were used, finding that

longer windows (up to 10,000 nucleotides) improved performance.

These studies together illustrate the limitations of reporter assays

with limited sequence context.

Although estimation of the clinical impact of specific variants

affecting splicing may not be mature, the prediction tools used here

are all very good at identifying which mutations in auxiliary splicing

signals identified by clinical exome or whole‐genome sequencing are

potentially deleterious. Furthermore, both high‐throughput splicing

assays and prediction methods are undergoing rapid developments

(e.g., Jaganathan et al., 2019). Thus, our ability to identify potential

causative variants from sequencing data is currently very good, and

these methods should be more widely used.
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