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Abstract

Classification of variants of unknown significance is a challenging technical problem in

clinical genetics. As up to one‐third of disease‐causing mutations are thought to affect

pre‐mRNA splicing, it is important to accurately classify splicing mutations in patient

sequencing data. Several consortia and healthcare systems have conducted large‐
scale patient sequencing studies, which discover novel variants faster than they can

be classified. Here, we compare the advantages and limitations of several high‐
throughput splicing assays aimed at mitigating this bottleneck, and describe a data set

of ~5,000 variants that we analyzed using our Massively Parallel Splicing Assay

(MaPSy). The Critical Assessment of Genome Interpretation group (CAGI) organized a

challenge, in which participants submitted machine learning models to predict the

splicing effects of variants in this data set. We discuss the winning submission of the

challenge (MMSplice) which outperformed existing software. Finally, we highlight

methods to overcome the limitations of MaPSy and similar assays, such as tissue‐
specific splicing, the effect of surrounding sequence context, classifying intronic

variants, synthesizing large exons, and amplifying complex libraries of minigene

species. Further development of these assays will greatly benefit the field of clinical

genetics, which lack high‐throughput methods for variant interpretation.
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1 | INTRODUCTION

The cost of next generation sequencing (NGS) has fallen several

thousand‐fold in the last 10 years, which has allowed for whole‐
genome sequencing and whole‐exome sequencing to become

common approaches in personal genomics and clinical medicine. A

typical exome sequencing study will reveal thousands of variants of

unknown significance (Telenti et al., 2016). The effects of these

coding variants on protein function are particularly difficult to

interpret, as individual functional assays do not exist for most

proteins. However, variants in splice‐regulatory elements typically

result in deleterious phenotypes. Splicing mutations are not only

harmful, but they are also prevalent. In fact, it has been predicted

that one‐third of all disease‐causing variants confer some degree of

aberrant splicing (Lim, Ferraris, Filloux, Raphael, & Fairbrother,

2011). The effect of variants on splicing is measurable through the

use of minigene assays (Cooper, 2005). Because splicing mutations

are deleterious, prevalent, and measurable, splicing minigene assays

are a valuable method for interpreting the pathogenicity of variants

discovered.

As thousands of variants are discovered in sequencing studies,

the challenge for precision medicine lies in the ability to classify

variants at the same rate they are discovered. Recently, our group
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developed a Massively Parallel Splicing Assay (MaPSy) to screen

~5,000 disease‐causing exonic mutations for splicing defects. Using

highly stringent criteria, this study showed that 10% of exonic

mutations altered splicing (Soemedi et al., 2017b). The ability to

evaluate variants for defective splicing is beginning to emerge as an

achievable goal with the advent of massively parallel reporter assays

(MPRAs) and high‐throughput screens (Adamson, Zhan, & Graveley,

2018; Ke et al., 2018; Soemedi et al., 2017b). Computational methods

aimed at leveraging MPRAs and high‐throughput assay data have led

to improved predictive models for classifying splicing variants that

have not been empirically verified (Bretschneider, Gandhi, Deshwar,

Zuberi, & Frey, 2018; Desmet et al., 2009; Fairbrother, Yeh, Sharp, &

Burge, 2002; Mort et al., 2014). The Critical Assessment of Genome

Interpretation (CAGI) recognized the need for a community effort in

advancing the computational methods in predicting the impacts of

genomic variation and devised a prediction challenge. In the

challenge, participants were asked to identify variants causing

splicing defects and estimate the severity of each defect. A variety

of different machine learning approaches were submitted, and the

top performer, a program called MMSplice, was recently described in

a publication (Cheng et al., 2019). Here, we outline methods,

challenges, and future directions for this hybrid experimental/

computational approach. We focus in particular on the role of

MPRAs in functional genomics and clinical medicine. In addition to

applications of this technology to consortia sequencing science and

discussing drug screening technologies, the effect of sequence

context on splicing in MPRAs and technical issues relating to

oligonucleotide synthesis are discussed.

2 | CAGI AND THE MAPSY DATA SET
CHALLENGE

Increasingly sophisticated predictive models have been developed to

estimate the effect of variants on splicing. Many of these models are

trained on data from various implementations of MPRAs (FAS‐ESS,
ESRseq scores, and HAL; Ke et al., 2011; Rosenberg, Patwardhan,

Shendure, & Seelig, 2015; Wang et al., 2004). However, these models

lack training on large data sets describing the effect of single

nucleotide variants on the process of splicing, hindering their ability

to produce reliable splicing predictions for variant interpretation. The

development of the MaSPy has now offered the splicing and machine

learning fields with a rich training data set describing the effect of

~5,000 single nucleotide variants on splicing. Recognizing the need

for improved prediction models for variant interpretation, CAGI

devised a competition where multiple machine learning teams were

challenged to construct splicing variant predictive models to aid in

the variant interpretation demands facing precision medicine. The

following section describes the MaPSy training and test sets provided

to CAGI, the challenge posed to the machine learning teams, and the

resulting machine learning splicing model which outperformed the

competing CAGI teams.

2.1 | Massively Parallel Splicing Assay (MaPSy)
experiment

The challenge was prepared from a splicing analysis of publicly

available disease‐causing variants. Nonsynonymous mutations

classified as disease‐causing (DM) were downloaded from Human

Genome Mutation Database (Stenson et al., 2009). Mutations

were mapped to internal exons of 100 nucleotides or less in

length and selected for those that fit into 170 nucleotide genomic

windows. The genomic window included 15 nucleotides of

downstream intronic sequence and at least 55 nucleotides of

upstream intronic sequence (n = 4,964). The mutant and wild‐type
versions of the 170‐mer genomic fragments were flanked with

15‐mer common primers and synthesized as a 200‐mer oligo

library (Figure 1a).

An additional 797 mutations were mapped to exons greater than

100 nucleotides. Each of these longer variant exons were “cut” in a

way to (a) preserve the 5′ and 3′ splice site signals and (b) a middle

portion of the exon was removed to decrease the size of the exon to

100 nucleotides or less to meet oligonucleotide synthesis size

restrictions.

A three exon in vivo splicing reporter was constructed to include

a Cytomegalovirus (CMV) promoter and a common first exon,

followed by the 200‐mer oligo library, and a common downstream

exon (Figure 1b). The resulting in vivo reporters were transfected to

human embryonic kidney HEK293T cells. RNA was extracted 24 hr

post transfection (Figure 1c). Input reporters and spliced species

were sequenced by Illumina HiSeq. 2500.

The in vitro splicing reporter includes a T7 promoter and a

common first exon, followed by the oligo library (Figure 1d). In vitro

reporters were obtained via in vitro transcription using T7 RNA

Polymerase. The resulting RNA was gel purified and used for splicing

reactions in 40% HeLa‐S3 nuclear extract for 80min at 30°C. Pools

of input and spliced RNAs were converted to complemenatry DNA

(cDNA) and prepped into an Illumina library for deep sequencing.

A contingency table was created for each mutant/wild‐type pair

and includes the counts obtained from deep sequencing of the input

pool as well as the output‐spliced fractions (Figure 1e). To determine

pairs with significant allelic skew we required at least 1.5‐fold change

and a two‐sided Fisher's exact test adjusted with 5% false discovery

rate (FDR). The following formula was used to calculate allelic skew:

( )/

/
log mut mut

wt wt2
s i

s i
, where muts is the count of reads in the spliced fraction

for the mutant, muti is the count of reads in the input for the mutant,

wts is the count of reads in the spliced fraction for the wild‐type, and
wti is the count of reads in the input for the wild‐type.

2.2 | Prediction challenge

Two sets of variants that were tested by MaPSy were provided to

CAGI, the training set and the test set. The training set included all

4,964 published variants (Soemedi et al., 2017b). The test set

includes all 797 mutant/wild‐type pairs of variants that fall within

exons that needed to by “cut” to fit in the oligonucleotide library. The
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F IGURE 1 MaPSy challenge

(a) Mutant and wild‐type versions of
170‐mer genomic fragments flanked by 15‐
mer common. (b) The in vivo splicing

reporter consists of the Cytomegalovirus
(CMV) promoter and Adenovirus
(pHMS81) exon with part of its

downstream intron at the 5′ end, followed
by the 200‐mer oligo library, and exon16
of ACTN1 with part of intron15 and bGH
PolyA signal sequence at the 3′ end. (c) The
in vivo reporters were transfected in
hek293 cells. (d) The in vitro reporter
includes a T7 promoter and Adenovirus

(pHMS81) exon. (e) Contingency tables
were created for each mutant/wild‐type
pair and include the counts obtained from

deep sequencing of the input pool as well
as the output‐spliced fractions to assess
defects in splicing

(a)

(b)

(e)

(d)

(c)
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sequence for both constructs including exon/intron boundaries

needed to evaluate allelic ratio, as well as the counts for the input

for both mutant and wild‐type species for both panels were provided.

CAGI participants were asked to submit predictions on the subset

of variants in the test set that passed our threshold as disruptors of

splicing both in vitro and in vivo and therefore were categorized as

exonic splicing mutations. Participants provided the probability that

each variant is an exonic splicing mutation and which allele from each

pair spliced better. In addition, given the input read counts, the

participants predicted the log2 allelic skew ratio for in vivo and in

vitro panels for each pair in the test set.

2.3 | Prediction winner: Modular modeling of
splicing

The winning prediction model, modular modeling of splicing

(MMSplice), trained a set of neural network modules separately for

exons, 3′ and 5′ splice‐sites, and intronic sequences. This method of

building modules for individual splicing‐relevant sequence regions

allowed the group to leverage multiple data sets to predict percent

spliced‐in (psi) values, splicing efficiency, and pathogenicity. The

resulting program, MMSplice, was shown to outperform previous

highly predictive models on predicting the effect genetic variants

have on splicing (Cheng et al., 2019).

3 | HIGH ‐THROUGHPUT METHODS IN
SPLICING

The success of the challenge prompted an examination of the

potential for this technology in precision medicine. Building from

advancements in solid‐phase oligonucleotide synthesis technologies,

massively parallel reporter assays (MPRAs) have become an

increasingly attractive approach for the study of alternative splicing

(Park, Pan, Zhang, Lin, & Xing, 2018). Extensive libraries of sequence

variants constructed into minigene reporters can be screened in

parallel for functional impacts on splicing. The study of wild‐type and

variant exons in minigene cassettes allows for direct assessment of

sequence contributions to splicing outcomes (Singh & Cooper, 2006).

Such MPRAs have been used to analyze the ability of sequence

variants in degenerate or mutationally saturated libraries to

influence 5′ and 3′ splice site selection (Rosenberg et al., 2015;

Wong, Kinney, & Krainer, 2018) and exon definition (Ke et al., 2018).

Recently, an MPRA that measured mutations within the primate

lineage helped identify a mathematical equation to calculate the

magnitude of splicing disruption caused by a novel exonic mutation.

In this equation, exonic mutations have a maximal impact in exons

with an intermediate degree of splicing (Baeza‐Centurion, Minana,

Schmiedel, Valcarcel, & Lehner, 2019). In other words, less efficient

splicing substrates are more prone to splicing defects. MaPSy,

another MPRA, provides a direct measure of splicing disruption

caused by exonic mutations. Mutations from thousands of different

exons can be assayed in parallel, offering both insights into the

determinants of splicing aberrations and a potential high‐throughput
technology for the classification of disease variants (Soemedi et al.,

2017b).

MPRAs are not the only approach for testing the effects of

variation on splicing. The CRISPR‐Cas9 system has also been used to

screen thousands of mutations in parallel within endogenous

genomic loci (CRISPR‐arrays). In CRISPR‐arrays, pools of guide RNAs

are used to introduce numerous mutations at one locus. For example,

a 6‐bp region of BRCA1 exon 18 was replaced with all possible

hexamers. The utility of CRISPR‐arrays is widely applicable in

functional genomics. They have identified novel regulatory elements,

pathogenic variants, and quantified effects such as nonsense‐
mediated decay (Canver et al., 2017; Findlay, Boyle, Hause, Klein,

& Shendure, 2014; Sanjana, 2017).

CRISPR‐arrays have some unique advantages. By editing en-

dogenous genes, they capture the physiologic context of the cell. All

relevant cis‐elements or secondary structural components are

preserved. They are also unconstrained by size limitations of solid‐
state oligonucleotide synthesis. Therefore, any full‐length exon may

be screened by this method. It is also more technically straightfor-

ward to construct a pool of guide RNAs than a pool of minigene

species, which may require polymerase chain reaction (PCR) and

other molecular biology techniques to assemble. Despite these

advantages, there are some important drawbacks to consider.

Haplotype cells lines have been required to achieve efficient

multiplex gene editing with CRISPR‐Cas9. CRISPR‐array throughput

can test variants to saturation, but only within a small window. In

other words, CRISPR screening is limited to one exon per experi-

ment, and also requires sufficient gene expression for downstream

analysis. Lastly, genes considered essential for cell survival may pose

additional limitations (Findlay et al., 2014). Splicing mutations in

essential genes may have lethal effects, because the only copy of the

gene is mutated in these assays.

MPRAs have several advantages over CRISPR‐arrays. Because
they utilize minigenes, MPRAs are not dependent on endogenous

gene expression. MPRAs tend to represent a pure measure of splicing

effects. Many clinical whole‐exome sequencing data sets are being

generated, which return large numbers of variants for interpretation.

MPRAs that leverage minigenes are better suited for studying the

functional consequences of these variants at the scale and wide-

spread genomic distribution of variants returned by exome sequen-

cing. For example, MPRAs can assay many or potentially all variants

of interest from a whole‐exome sequencing study instead of being

restricted to one gene or exon (Adamson et al., 2018; Soemedi et al.,

2017b). Therefore, MPRAs are the method of choice to analyze

variants from consortia sequencing because of these unique

advantages over other methods, like CRISPR‐arrays.
There are still several challenges that limit the potential of

MPRAs. First, splicing is a tissue‐specific process. For example, the

brain has the highest degree of exon skipping, and splicing in the liver

is almost entirely limited to cryptic alternative splicing events

(alternative 5′ and 3′ splice sites; Yeo, Holste, Kreiman, & Burge,

2004). MPRAs only report splicing outcomes in one tissue type, and
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cannot be extrapolated to other tissue types. However, we can

identify similar splicing events across tissues from RNA‐seq studies in

multiple tissues, such as the GTEx consortium, in to determine the

potential effect of a variant across tissue types (Consortium et al.,

2017). In addition, MPRAs rely on artificial minigene constructs that

lack valuable surrounding endogenous sequence context that may

impact splicing. Exons that are tested in these assays are typically

flanked by common exons to all species in a minigene library as

opposed to the exons from the endogenous transcripts. Sequence

context from the whole pre‐mRNA transcript affects the order of

intron removal and can lead to alternative splicing events not

captured in MinGenes (Kim et al., 2017). Moreover, as splicing is a

cotranscriptional process, chromatin binding state, absent in mini-

genes, has also been shown to affect splicing (Jaganathan et al.,

2019). Lastly, large data sets containing genetic variants for screen-

ing by MPRAs often lack corresponding phenotypic or other relevant

patient information and thus limit the use of MPRAs in returning

informative variant discoveries.

4 | NEW SCIENTIFIC AND HEALTHCARE
INITIATIVES: GEISINGER HEALTH SYSTEM
AND SIMONS FOUNDATION OF AUTISM
RESEARCH INITIATIVE

Many data sets reporting disease‐causing or disease‐associated
variants, such as the Human Gene Mutation Database (Stenson

et al., 2009) and ClinVar (Landrum et al., 2016), have limited

information on clinical phenotypes and lack methods in contacting

and/or requesting biospecimens from patients. Fortunately, new

scientific and healthcare initiatives have recognized the need in

accurately identifying and interpreting genomic findings that will

prove relevant to clinical efforts and precision medicine. Such

relationships provide a direct means for validation of functional

genomic approaches, return incidental findings to patients, and

further analyze the relationship between variants and patient

phenotypic characteristics.

A prominent example of this type of integrated data set can be

found in the DiscovEHR cohort (Dewey et al., 2016). Through a

partnership with the Regeneron Genetics Center, Geisinger has

created the DiscovEHR cohort (Dewey et al., 2016). The DiscovEHR

cohort is a large population of patients from the Geisinger healthcare

system who have had exome sequencing added to their electronic

healthcare records to pair genotype with phenotype in a single data

set. This patient cohort currently includes 92,805 participants drawn

entirely from participants in the MyCode Community Health

Initiative (Carey et al., 2016). MyCode participants are consented

for collection of biospecimens to be used in conjunction with all the

data from their electronic health record (EHR). The participants in

MyCode have an average of 14 years of medical records that can be

linked with their exome sequencing results, including; clinical notes,

lab values, ICD10 Codes, medications, and imaging studies. This

combination of genotypic and detailed phenotypic information

provides for an extremely rich data set for genomic discovery.

MyCode participants are also consented for recontact for additional

research which allows for additional clinical evaluation with more

targeted phenotyping to supplement the rich data set that already

exists in the EHR. DiscovEHR has already been proven to be a

tremendous resource for genomic discovery (Abul‐Husn et al., 2018;

Gusarova et al., 2018; Verma et al., 2019).

An integrated data set such as the DiscovEHR cohort is a suitable

platform for the aggregation of data from additional functional

genomic experiments like high‐throughput splicing assays. By

comparing the comprehensive profiles of patients with splicing

variants to matched controls, overrepresented phenotypes can be

discovered that are representative of known gene effects and

perhaps even discover phenotypes related to these variants that

have not previously been described. For example, splicing defects

could be a tissue‐specific phenomenon, which could alter the

presentation of particular genetic disorders. The interactive nature

of the healthcare system allows researchers to recontact and assess

patients for phenotypic features that may not be in their medical

record through additional clinical evaluation, laboratory testing, or

imaging studies. The sheer size of the DiscovEHR cohort which

accounts for a large amount of rare variation allows for a more

complete analysis of the phenotypic consequences of rare variants

and the power of this resource increases as it continues to grow

(Mirshahi et al., 2018).

In contrast to initiatives identifying variants across individuals

sampled from a population, additional initiatives are taking a disease‐
centric approach to identify variants relating to a single disease. For

example, the Simons Foundation of Autism Research Initiative

(SFARI) was launched in 2003 to fund innovative research to

understand the etiology of autism spectrum disorders (ASD). SFARI

Simons Simplex Collection (SSC) has performed whole‐exome

sequencing on families with one ASD affected child, and unaffected

parents and siblings (quad families) to identify inherited and de novo

variants. In combination with genomic data, SSC has collected

extensive phenotypic data (i.e., IQ, cognitive, developmental, beha-

vioral, etc.) and biospecimens (i.e., blood samples/cell lines) for each

participant. This wealth of data offers a unique advantage to

researchers attempting to decipher the phenotypic and genetic

heterogeneity that characterizes ASD. More specifically, we can

leverage this data by identifying potentially deleterious variants and

ASD risk gene through the use of MaPSy, validate splicing defects

using the relevant biospecimens, and even analyze phenotypic

attributes that may have arisen due to defective splicing.

5 | TECHNICAL CHALLENGES: DESIGNING
AND UTILIZING COMPLEX LIBRARIES TO
ASSAY SPLICING

The design of libraries for use in MaPSy assays is constrained by

several technical challenges. Most notably, only mutations in exons of

fewer than 100 nucleotides can be included as a consequence of
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current limitations in oligonucleotide synthesis technology. As the

median length of internal exons is approximately 130 nucleotides,

more than half of all human exons are excluded from MaPSy splicing

characterization. Advances in solid‐phase oligonucleotide synthesis

will continue to expand the window size for sequence design moving

forward. Currently, exons greater than 100 nucleotides can be

truncated to preserve 5′ and 3′ splice site signals and proximal

regions, to approximate the effect of potential splice variants.

5.1 | MPRAs and intronic variants

An additional technical challenge with MaPSy, and MPRAs using

minigene approaches, lies in the analysis of intronic variants. As

introns are excised, identifying variants in introns are lost during

splicing and cDNA generated from mutant and wild‐type alleles

become indistinguishable. Recently, Adamson et al. (2018) devised a

barcoding strategy using an eight‐nucleotide barcode that, after

subcloning into a reporter plasmid, designated a particular variant at

the end of a transcript. These extra steps can potentially limit library

complexity and random octamers may themselves affect gene

expression. To circumvent this issue in MaPSy, a one‐step barcoding

strategy has been developed to allow for the identification of the

mutant and wild‐type exons from the spliced product. In our method,

a barcode was added to every intronic mutant species as a unique

marker. Each oligonucleotide library species consisted of a mutant or

wild‐type intronic sequence and 26 nucleotides of the endogenous

exon. The last six nucleotides of the endogenous exons were used to

design each barcode (Figure 2a). All possible variants within the

barcode window were submitted to the Spliceman prediction

software, and the three variants least likely to disrupt splicing were

selected as barcodes for each mutant species (Lim & Fairbrother,

2012). Therefore, each barcode consisted of unique point variants for

intronic mutant identification, and each intronic mutant species was

tested in triplicate using three unique barcodes.

To evaluate the effect of the barcodes on splicing, the counts for

each intronic mutant barcoded triplicate in the unspliced input versus

the spliced output were plotted to test for a correlation. Presumably

if the representation of each barcoded species in the unspliced input

and spliced output are similar, we can be confident the barcodes are

likely not affecting splicing. Of the 208 triplicates which had at least

10 reads each, 175 (84%) of these were highly correlated (r2 > 0.9),

suggesting that the barcoding strategy was effective (Figure 2b,c).

This result suggests the observed allelic imbalances in splicing are

more likely to be caused by the mutant being tested, and not a result

of the barcode. This new approach will allow for the expansion of

analysis into intronic variants.

5.2 | Challenges with complex library
amplifications

A related technical issue arises from difficulties in maintaining initial

oligonucleotide library complexity during amplification. Library

synthesis provides a highly complex pool of oligonucleotides, each

at sub pmol quantities. To apply library contents to MPRAs,

amplification through PCR is necessary to acquire experimentally

tractable quantities of DNA. However, amplification may alter the

overall composition of the library, changing both the overall content

and the ratio of constituents possessed there within. Such changes

can be the result of either PCR drift or PCR selection (Polz &

Cavanaugh, 1998). PCR drift is a bias that is assumed to be the result

of stochastic variation in early cycles of amplification, and is not

reproducible in replicate PCR amplifications. Alternatively, PCR

selection operates on mechanisms which inherently favor amplifica-

tion of particular templates relative to others. Factors such as the GC

content and relative structure of oligonucleotides may dictate their

representation in an amplified library. PCR of complex libraries also

holds the heightened potential to generate artifacts in the form of

chimeras and heteroduplexes, which can quickly change the

compositional landscape of a library (Qiu et al., 2001). To circumvent

these issues, amplification can most effectively be achieved through

multiple rounds of fewer amplification cycles (5–10) followed by size

selected purification of PCR products. However, even with optimized

protocols, population dynamics are observed to shift between rounds

of amplification (Figure 3a) suggesting that PCR selection continues

to restrict the maximum complexity that can be achieved in an

applied library. Fortunately, within the context of paired oligonucleo-

tides (wild‐type and variant), both species seem to behave similarly

during amplification (Figure 3b). Overall representation, including

observed dropout, is typically conserved in final data sets between

compared oligonucleotides, minimizing the number of unproductive

reads. In moving forward, the use of low pass sequencing allows for

optimization of amplification protocols that place an emphasis on

(a)

(b) (c)

F IGURE 2 New MaPSy barcoding strategy(a) The schematic of
the barcoding strategy shows that the last six nucleotides (nt) of the
region containing endogenous sequence (150 nt) was used to design

barcodes. Mutations tested by the assay fell within 60 nt upstream of
the 3′ss. (b) Preliminary Data demonstrates correlation between
three barcoded triplicates for LMNA exon 7. (c) Distribution of R

squared values across barcoded triplicates of 208 other exons
demonstrates selected barcodes do not alter splicing

1230 | RHINE ET AL.

 10981004, 2019, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hum

u.23866 by B
row

n U
niversity L

ibrary, W
iley O

nline L
ibrary on [27/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



retaining both complexity of oligonucleotide content and uniformity

of representation there within.

5.3 | The effect of flanking sequence context on
variant perturbation in MaPSy

Another limitation lies in the accuracy of MRPAs in representing

physiological outcomes. Previous reports have suggested that surround-

ing sequence context is an important determinant in splicing outcome

(Kim et al., 2017). Our original MaPSy tested ~5,000 disease‐causing
exonic variants in a three exon minigene where each variant was flanked

by an upstream adenovirus exon and a downstream ACTN1 exon (Figure

1). To determine the potential contribution of sequence context to

splicing outcome, we re‐implemented MaPSy to assess potential splicing

defects in 748 alleles caused by de novo variants reported in the SSC

using three slightly different three exon minigene reporters. Instead of

using the adenovirus upstream exon as described in (Soemedi et al.,

2017b), three exons representing a range of 5′ss strengths, determined

by MaxEntScan (Yeo & Burge, 2004), were synthesized into three

separate in vivo minigene reporters and assayed in parallel. Each reporter

contained either the VCP exon 15, EMC7 exon 3, or VCP exon 10, a 230‐
mer genomic fragment containing either the mutant or wild‐type
(reference) sequence, and a downstream ACTN4 exon (Figure S1). This

resulted in each de novo variant being assayed in triplicate under three

separate upstream exonic sequence contexts. Deep sequencing of input

libraries and output‐spliced fractions were used to determine the allelic

ratio of mutant/wild‐type pairs (M/W splice ratio) as described previously

(cite Nat gen paper) (Figure 4a, Table S1). Despite the differences in the

sensitivity of different reporter constructs, general agreements were

observed between the relative allelic imbalances (i.e., M/W splice ratios)

in all three assay runs (Figure 4b). Although sequence context does

impose an effect on splicing outcome, as described previously (Kim et al.,

2017), the validation rate of the original MaPSy (~83%; Soemedi et al.,

2017b) and the general agreement between the variants allelic imbalance

given the three new minigene constructs, suggests that the MaPSy assay

offers a reliable method for prioritizing variants by their ability to affect

splicing.

6 | FUTURE POTENTIAL

In summary, MPRAs show great promise for future efforts in

precision medicine and drug discovery. Variants identified in

consortia sequencing and integrated genetic data sets such as the

Geisinger MyCode program, are well suited for MPRAs. MPRAs can

help interpret incidental findings in clinical sequencing studies and

guide clinical decisions. Moreover, the relatively low cost of deep

sequencing has and will continue to produce large data sets

containing novel variants. MPRAs are currently the ideal method

for interpreting the functional consequences of novel variants, as

they keep pace with discovery, and in the case of MaPSy, accurately

assess a variant's effect on splicing with a ~83% validation rate

(Soemedi et al., 2017b). In addition to the functional interpretation of

variants, the data generated from MPRAs have also been used to

train predictive models for the effects of novel variants on splicing

(Cheng et al., 2019; Ke et al., 2011; Rosenberg et al., 2015; Wang

et al., 2004), offering additional tools for variant interpretation. A

recent analysis evaluated the predictive power of three splicing

variant prediction programs (SPANR [Xiong et al., 2015], ESRseq

scores [Ke et al., 2011], and Hexplorer [Erkelenz et al., 2014]) and

found that the model trained on a minigene screening of all possible

hexamers, ESRseq, was the most predictive in nature (Soukarieh

et al., 2016). Even more recently, the predictive ability of MMSplice,

the splicing prediction model trained on the single nucleotide variant

MaPSy data and additional splicing MPRA implementations, was

shown to outperform multiple splicing prediction programs (Cheng

(a) (b)

F IGURE 3 Amplification of complex oligonucleotide libraries (a) Density of oligonucleotide library substrate read counts between successive
rounds of amplification (second, third, and fourth). Initial library contained 7,520 oligonucleotide species generated using Agilent solid‐phase
oligonucleotide synthesis technologies. Next generation sequencing performed using Illumina MiSeq. Dashed lines represent mean substrate
read counts. (b) Relationship of paired mutant and wild‐type oligonucleotide substrate read counts after initial amplification of an
oligonucleotide library containing 1,504 substrates. Deep sequencing was performed using Illumina HiSeq. 3,000 (2 × 150)
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et al., 2019). These analyses further highlight the utility of MRPAs in

not only assessing functionally a variant's effect on splicing but

also in the construction of predictive models. In addition to MPRA‐
trained prediction models, a recent splicing model was trained on

primary sequence alone and produced reliable splicing predictions

(Jaganathan et al., 2019). The advantage of this model is that it can

identify long‐range sequence features that are not captured in the

minigenes used in MPRAs. In time, it is likely that multiple algorithms

will be combined when making classifications to improve the

interpretation of variants. In general, the advantage of computational

methods is their ability to assess more variants than can be assayed

in a single MPRA and will help improve the novel variant

classification problem facing clinical sequencing studies.

In addition to variant interpretation, MPRAs can identify the

effects of drugs on splicing. Many drugs, such as amiloride,

demonstrate widespread, but tolerable effects on splicing (Chang

et al., 2011; Soemedi et al., 2017a). These drugs can be screened

against a library of variants to determine their personalized effects on

patients with rare diseases (Soemedi, Vega, Belmont, Ramachandran,

& Fairbrother, 2014). For example, a drug may be found to exacerbate

a splicing defect in a patient. The patient's physician could be informed

of the adverse event, and a safer drug may be prescribed instead.

Conversely, some splicing defects may be rescued by a drug. In this

case, follow‐up studies may be indicated, which might lead to the

discovery of novel therapeutics for diseases that are too rare to justify

the expense of other methods such as high‐throughput screening.
Although there are some limitations to the scope and scale of

MPRAs, viable strategies are being developed to circumvent them.

Solid‐phase oligonucleotide synthesis technology currently limits the

length of the species to be tested in parallel to a few hundred base

pairs. For splicing, this limits the number of full‐length exons that can

be tested to less than half of all human exons. This challenge can be

addressed by designing chimeric exons that contain only one of the

splice sites of larger exons. Intronic variants are also more

challenging to test, because the fully‐spliced species of the mutant

and wild‐type are degenerate. We have discussed barcoding methods

that help identify degenerate species after splicing. The Vex‐seq
library design utilized one of these methods to test intronic variants

(Adamson et al., 2018).

The winners of this CAGI challenge, who developed the

MMSplice prediction software, can accurately predict the splicing

outcomes of novel variants. The CAGI data set, we have generated

(b)

(a)

F IGURE 4 Context dependence in MaPSy (a) 748 de novo mutant exons and their corresponding wild‐type counterparts were incorporated
into three different three exon in vivo constructs. Both the unspliced input and spliced output library were deep sequenced to establish allelic

imbalance between mutant and wild‐type species. (b) Comparison of individual allelic ratios of variants in the reporter constructs
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represents the importance and future promise of variant interpreta-

tion algorithms. Similar data sets are likely to be generated from

future clinical sequencing studies. Platforms such as MMSplice will

help classify novel variants from these studies. Such classifications

will help both for returning incidental findings to patients, and for

determining the safety and efficacy of drugs for patients with rare

variants.
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