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Human genetic disorders occur in ~8% of the population1. Major tech-
nological advancements in the past decade have made it possible to 
detect all sequence variations in individual genomes in a cost-effective 
manner. In combination with capture technologies, targeted sequenc-
ing of all protein-coding regions of the human genome (the exome) 
has been increasingly used for routine diagnostics in Mendelian 
disorders2,3. Unfortunately, the tremendous progress that has been 
made in variant detection has outpaced the capacity to character-
ize sequence variations. Recent deep sequencing of human exomes 
detected ~14,000 single-nucleotide variants (SNVs) per individual, 
47% of which were predicted to be deleterious by one or more in silico 
prediction tools, but there was very little agreement (<1%) between 
the commonly used methods4.

Large-scale sequencing has identified many loss-of-function vari-
ants in asymptomatic individuals that are thought to cause severe 
genetic disorders5,6. These variants could represent annotation or 
sequencing errors, partial penetrance or recessive alleles carried by 
asymptomatic individuals. This uncertainty illustrates the urgency for 
better characterization of sequence variation. Although it is difficult 
to predict the effect of an SNV on protein function, the characteriza-
tion of splicing mutations is a tractable problem. Splicing mutations 
are easily detected and quantified. They are deleterious, and one-third 
of the alleles that cause hereditary disease are predicted to confer 
some degree of missplicing7. Some of these mutations disrupt canoni-
cal splice sites, whereas others disrupt the multitude of enhancers 
and silencers that can modulate splice-site usage. Any change in an 
exonic sequence may therefore disrupt or create cis-acting elements 
that facilitate exon recognition, resulting in aberrant splicing. Here we 

present a new parallel splicing reporter system to characterize 4,964 
published disease-causing exonic mutations for effects on splicing. 
The present study identified an allelic splicing imbalance caused by 
these exonic mutations and provided insights into the determinants 
and mechanisms of splicing aberrations.

RESULTS
Massively	parallel	splicing	assays
We developed a massively parallel splicing assay (MaPSy) to screen 
a panel of 4,964 exonic disease mutations (5K panel) reported in the 
Human Gene Mutation Database8 (HGMD) for mutations causing 
splicing defects. One library was designed to evaluate the effects of the 
mutations on splicing in vivo via transfection in cells grown in tissue 
culture. The second library comprised RNA substrates designed to 
evaluate the mutations’ effects on splicing in vitro via incubation in 
cell nuclear extract. Solid-phase oligonucleotide synthesis technology 
and PCR were used to manufacture the in vivo library and the template 
for the in vitro library (Fig. 1). Each reporter in the library contains a 
170-mer genomic fragment of either the mutant or wild-type (refer-
ence) sequence, each of which consists of an exon, at least 55 nt of the 
upstream intron and 15 nt of the downstream intron (Fig. 1a)9. The 
allelic ratio for each mutant/wild-type (M/W) pair was determined 
from the allelic counts obtained from deep sequencing of the input 
libraries, the output spliced fractions and the RNA pools isolated 
from different in vitro spliceosomal intermediates (Fig. 1b,c). The 
most common outcome of disrupted splicing in vivo is exon skipping, 
whereas most pre-mRNAs with splicing mutations in vitro remain 
unspliced. While changes in transcription or stability may account for 
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an altered allelic ratio in the spliced fraction in vivo, the in vitro assay is 
a direct measure of splicing. Despite substantial differences in process-
ing and substrate design, general agreements were observed between 
the allelic splicing ratios obtained from the two assays (Fig. 1d;  
Pearson’s r = 0.55). Approximately 10% of the exonic mutations in the 
5K panel altered splicing in both systems (Fig. 1f; >1.5-fold change, 
two-sided Fisher’s exact test, adjusted with 5% false discovery rate 
(FDR)) and thus were regarded as unambiguous splicing changes and 
were classified as exonic splicing mutations (ESMs). We also per-
formed MaPSy on a control panel of common SNPs, which disrupted 
splicing at a significantly lower level (8/228 or 3% of common SNPs,  
P = 9.94 × 10−5, two-sided Fisher’s exact test; Supplementary Table 1).  
Additionally, cryptic 3′-splice-site usage was identified in both assays 
(Fig. 1e; Pearson’s r = 0.8). Although most bona fide cryptic splicing 
events (74%) were caused by the creation of an AG (i.e., a splice accep-
tor site), a substantial number of disease-associated alleles caused dra-
matic shifts in the usage of an existing AG (Supplementary Fig. 1).

MaPSy was found to be robust (Pearson’s r = 0.85–0.89 between 
allelic splicing ratios from experimental replicates; Supplementary 
Fig. 2a–d). In order to assess the validity and relevance of the splicing 
aberrations detected by MaPSy, we performed RT–PCR validations 
in RNA extracted from patient samples consisting of lymphoblas-
toid cell lines, fibroblasts, whole blood and postmortem brain tis-
sues (Supplementary Fig. 3a–f and Supplementary Table 2). The 
validation samples were chosen solely on the basis of availability. In 
addition, we searched the literature for follow-up studies involving 
the mutations in the 5K panel that included RNA splicing analyses in 
patient tissue samples. A summary of the validations can be found in 
Supplementary Table 2. Overall, ~81% (26/32) of MaPSy-detected 
ESMs were validated in patient tissue samples (Fig. 1g). Furthermore, 
we compared the splice-site usage in 19 different cell lines that are 
part of the Encyclopedia of DNA Elements (ENCODE) data set with 

wild-type (reference) splicing in our 5K panel. Exons that spliced 
most efficiently in the 5K panel also had the highest average splice-
site usage in the ENCODE cell lines, whereas exons that spliced least 
efficiently in the 5K panel also had the lowest average splice-site usage 
in the ENCODE data (Supplementary Fig. 3g).

Nonuniform	distribution	of	splicing	mutations
Some exons appeared to have a higher fraction of splicing mutations 
than others (for example, exon 8 of MLH1 and exon 18 of BRCA1, 
adjusted P = 2.26 × 10−3 and 4.18 × 10−6, respectively, two-sided bino-
mial test). Interestingly, the set of (mostly) intronic splice-site muta-
tions (SSMs) were also not distributed uniformly in disease-associated 
genes. Analyses of 2,314 disease-causing gene loci identified 64 genes 
that are predisposed to SSMs (Fig. 2a, left and Supplementary Table 3)8.  
SSMs often result in exon skipping. Not surprisingly, SSMs and non-
sense mutations in human disease-associated transcripts were posi-
tively correlated, as they both result in loss of function of the proteins 
that they encode. This correlation was not observed between mis-
sense mutations and SSMs (Fig. 2a, middle and right). We found that 
ESMs were more abundant in genes that were also enriched for SSMs  
P = 3 × 10−6, Kruskal–Wallis; Fig. 2b and Online Methods).  
This effect was more pronounced at the level of the individual exons  
(P = 2.1 × 10−34, Kruskal–Wallis; Fig. 2c and Online Methods). 
Moreover, disease-causing mutations with autosomal dominant inher-
itance showed a twofold ESM enrichment in haploinsufficient genes 
as compared to haplosufficient genes (P = 0.002, Kruskal–Wallis;  
Fig. 2d). This finding is in agreement with splicing mutations acting 
mainly via a loss-of-function mechanism and further confirms the util-
ity of MaPSy in identifying deleterious ESMs (Supplementary Fig. 4). 
The same enrichment was also observed in SSMs reported in the HGMD  
(P = 0.02, Kruskal–Wallis; Fig. 2e)10. Recently, the Exome Aggregation 
Consortium (ExAC) identified 3,230 genes that are depleted of  
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protein-truncating variants (PTVs) in 60,706 humans6, thus pro-
viding evidence for extreme selective constraint. Because PTVs and 
splicing mutations often share the same loss-of-function mechanism, 
we examined disease-associated ESM occurrence in PTV-intolerant 
genes (probability that a gene is intolerant to a loss-of-function muta-
tion (pLI) ≥ 0.9)6 in comparison to other genes. In the 5K panel, we 
found a threefold excess of ESMs in PTV-intolerant genes (n = 92) 
as compared to PTV-tolerant genes (n = 66) that cause dominant 
disease traits (adjusted P = 0.005, Kruskal–Wallis; Supplementary 
Fig. 5a)6. These findings suggest that ESMs and SSMs are enriched 
in haploinsufficient genes, in which the loss of one functional copy 
likely leads to a disease phenotype.

Random	forest	classification	of	exonic	splicing	mutations
Various genomic and sequence features have been reported to affect 
splicing10–14. Although most of these studies were only done using a 
few substrates, MaPSy enables direct comparisons of the splicing per-
formance of thousands of exons in vivo and in vitro (Supplementary 
Fig. 2e). Many of these features (for example, differential GC content 
between exons and introns and density of exonic splicing silencers 
(ESSs)) were confirmed with MaPSy (Supplementary Fig. 6a)11,13. 
We used random forest classification (Online Methods) on the ESM 
data set generated with MaPSy to further understand the differ-
ent contributions of the various genomic and sequence features 
that may lead to ESM15. Performance of the random forest model  
was measured by mean area under the curve (AUC = 0.81, 0.755  

and 0.816 for the in vivo, in vitro and combined approaches, respec-
tively) (Fig. 3a). The in vivo assay performed better than the in vitro 
assay, but combining the two assays resulted in further increase in 
sensitivity to ESMs. Measures of feature importance were calculated 
as the mean decrease in accuracy (MDA). Each feature was catego-
rized as a property of the mutation, the exon or the gene (Fig. 3b). 
It was surprising that the majority of the top predictors of ESMs 
that are not within the splice-site regions (~76%) were exon-level 
features, rather than some properties of the nucleotide substitu-
tions (for example, exon splicing enhancer (ESE) disruption and 
ESS creation). In other words, some exon properties (for example, 
low ESE density and high ESS density) sensitize an exon to ESMs—
variants in these exons are more likely to disrupt splicing (adjusted  
P = 1.8 × 10−12 and 7.8 × 10−18, Kruskal–Wallis, for ESE and ESS 
density, respectively; Supplementary Fig. 6b). In addition, the ran-
dom forest model suggests that ESMs are more likely to occur in 
genes with many introns. We found that PTV-intolerant genes6 also  
contained more introns than the average for disease-associated 
genes (P < 2.2 × 10−16, Mann–Whitney), similar to ESM- and SSM-
enriched genes (Supplementary Fig. 5b).

RNA-binding	protein	motifs	in	the	5K	panel
Presumably, most mutations that alter splicing act by disrupting the 
binding site of an activator or by creating a binding site for a repressor.  
The loss or gain of previously characterized elements (i.e., the mutation 
being predicted to either promote or inhibit splicing) was compared  
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to loss or gain of splicing in MaPSy12,16–19 (Fig. 4a). A positive correla-
tion was observed between gains of known exonic enhancing elements 
and relative splicing performance (i.e., mutant/wild type ratio, adjusted 
P = 7.75 × 10−25, linear regression; Fig. 4b and Online Methods).  
In contrast, a negative correlation was observed between gains of 
known exonic silencing elements and the relative performance of 
splicing (adjusted P = 0.0001, linear regression; Fig. 4b).

To predict which binding events of trans-acting factors were affected 
by exonic mutations, we compared the splicing effect of thousands of 
point mutations (using the relative splicing performance of the mutant 
versus wild-type sequence in MaPSy) with the predicted change of the 
binding affinity of 155 human RNA-binding proteins (RBPs) (deter-
mined bioinformatically using published data)20. Briefly, mutant–wild 
type pairs were ranked from the lowest to highest degree of exon 

inclusion for the mutant allele relative to the wild-type allele. The 
predicted changes in binding affinity were compared to the observed 
gain or loss of splicing activity (i.e., the mutant/wild type ratio)21. 
Levels of SRSF1, a well-characterized exonic splicing activator22,23, 
showed a positive correlation with splicing (adjusted P = 3.34 × 10−27, 
linear regression; Fig. 4b), whereas levels of polypyrimidine tract– 
binding protein 1 (PTBP1), a known exonic splicing repressor, corre-
lated negatively with splicing performance (adjusted P = 3.26 × 10−21,  
linear regression; Fig. 4b)24,25. As the presence of an RBP motif does 
not necessarily result in a binding event20,26, it is necessary to validate 
the relationship between the increase or decrease of protein binding 
with the increase or decrease of splicing. An ESM in exon 20 of COL1A2 
(NM_000089.3:c.1045G>T) was predicted to create a PTBP1 motif. 
If PTBP1 binding were responsible for splicing repression, depletion 
of PTBP1 would be predicted to relieve the splicing defect. We found 
that, in the absence of PTBP1, rescue of splicing (i.e., ~0.5-fold less 
skipping) was observed in the mutant exon, but not in the wild-type 
exon (P = 4.19 × 10−5, two-sided Cochran–Mantel–Haenszel χ2 test;  
Fig. 4d, right and Supplementary Fig. 7a). An ESM that was pre-
dicted to function by disrupting SRSF1 binding in exon 8 of MLH1 
(NM_000249.3:c.595G>C) was also selected for similar analysis. In 
the absence of SRSF1, the wild-type exon had a significant increase 
in skipping events (P = 0.0002, two-sided Cochran–Mantel–Haenszel 
χ2; Fig. 4d, left and Supplementary Fig. 7b), but the mutant exon did 
not (P = 0.07, two-sided Cochran–Mantel–Haenszel χ2). This result 
demonstrates how motif prediction can identify mutations where the 
gain of PTBP1 binding or the loss of SRSF1 binding can lead to the 
ESM phenotype.

Clustering the functional profiles of human RBP motifs in the 5K 
panel (Online Methods) resulted in 19 clusters, of which the 2 largest 
matched the profile of exonic splicing enhancers and repressors (Fig. 4c).  
The method was robust; >90% of all motifs that functioned as silenc-
ers or enhancers in vivo segregated into the same category in vitro 
(P = 1 × 10−16 and 1.5 × 10−10, one-sided Fisher’s exact test for Venn 
diagram overlap of exonic splicing repressors and activators, respec-
tively; Fig. 4c and Supplementary Fig. 8e). Overall, 38 motifs cor-
responding to 35 RBPs consistently behaved as exonic repressors and 
24 motifs corresponding to 25 RBPs behaved as exonic activators in 
both assays. Comparing the degree of predicted intronic binding with 
splicing performance suggests that most exonic repressors enhance 
splicing when bound in introns (57%; Supplementary Fig. 8c) and 
most exonic activators repress splicing when bound in introns (77%; 
Supplementary Fig. 8d). These findings reinforce the notion that 
splicing factors behave in highly position-dependent manners7,27.

Mechanistic	signatures	of	splicing	mutants
During the development of the in vitro splicing assay in the 1980s, 
techniques were developed to isolate the biochemical intermedi-
ates in the stepwise assembly of the spliceosome28. A spliceosome is 
assembled from the A through the B to the C complex on the model 
adenovirus substrate, as previously described29,30. In accordance 
with catalysis occurring in the C complex, chemical intermediates 
of splicing co-migrated with the C complex during glycerol-gradi-
ent centrifugation (Fig. 5a). This same procedure was implemented 
on the 5K panel of mixed library substrates. Although each library 
member is the same length, greater heterogeneity in complex mobil-
ity was observed (Fig. 5b). Despite this increased heterogeneity, dis-
tinct splicing complexes were effectively partitioned, as the splicing 
intermediates and final products were found to segregate into the 
same fractions as seen in the control (Fig. 5c). Furthermore, each 
stage of spliceosome assembly had a distinct composition of library 
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species that could be further enriched by a systematic evolution 
of ligands by exponential enrichment (SELEX) approach (Fig. 5d 
and Supplementary Fig. 9a). For example, extracting RNA from 
the B/C fraction and repeating the spliceosome assembly assay 
returned a clear bias toward the B/C complex (Fig. 5d, middle), 
whereas reassembly of the A fraction resulted in a bias toward the 
A complex (Fig. 5d, bottom). By using glycerol-gradient centrifuga-
tion coupled with next-generation sequencing, the allelic ratio of 
each locus was determined at the different stages of spliceosome 
assembly: pre-assembly (t0), A, B/C and spliced. In general, RNA 
species that were enriched in the early A complex were under-rep-
resented in the spliced fraction, suggesting that the species blocked 
from transitioning to the catalytic B/C complex were accumulating 
in the A complex. Conversely, RNA species that were enriched in 
the B/C complex were also enriched in the spliced fraction, sug-
gesting that spliceosomes at the B/C stage were mostly committed 
to splicing (Supplementary Fig. 9b). Clustering the 5K panel by 
allelic ratios in the different spliceosomal fractions showed distinct  

patterns of disruptions. Most mutations affected multiple tran-
sitions of the spliceosome (Fig. 6 and Supplementary Fig. 9c).  
We found that mutations in the same exon were more likely to 
cluster together (P = 0.008, permutation test). This result suggests 
that an exon disrupted by splicing mutations will tend to fail at 
the same stage of spliceosome assembly, a behavior that is consist-
ent with the finding that exon properties are strong predictors of 
ESMs (Fig. 3b). The allelic ratio profiles in the different assemblies 
seem to represent mechanistically distinct scenarios of splicing 
disruption. For example, mutants in cluster 20 are strongly inhib-
ited in each step of spliceosome assembly (Fig. 6). Interestingly, 
cluster 20 comprises mutations that are likely to trigger struc-
tural rearrangements (average ∆∆G = 1.95 kcal/mol, adjusted  
P = 0.014, permutation test)31. They are single substitutions that, on 
average, were predicted to trigger the formation of four new base 
pairs that contribute to a more closed RNA secondary structure. 
Cluster 15 contained mutations in weakly defined exons (low dif-
ferential GC content and high numbers of ESSs, adjusted P = 0.008  
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and 0.014, respectively, permutation test) and flanked by highly con-
served introns (adjusted P = 0.006, permutation test). The splicing 
progression of these mutants was stalled in A and B/C, all of which 
significantly altered splicing in vitro and ~80% of which also sig-
nificantly altered splicing in vivo. Exons in clusters 15 and 20 are 
also frequent targets of disease-causing SSMs8, which is consistent 
with the finding that disease-causing ESMs and SSMs are often co-
enriched in the same exons. In contrast, mutations in cluster 14 were 
associated with strongly defined exons (high differential GC content 
and low numbers of ESSs, adjusted P = 0.001 and 0.002, respectively, 
permutation test) and rarely disrupted splicing (Fig. 6). Mutants 
in cluster 7 were found in exons with strong splice sites (adjusted  
P = 0.01, permutation test), and their respective wild-type exons were 
strong splicers both in vivo and in vitro, having a mean splicing effi-
ciency that was significantly higher than the mean splicing efficiency 
of wild-type exons from a random sampling of 10,000 (adjusted  
P = 0.0008 for both assays, permutation test). The splicing progressions 
of these mutants were mainly inhibited in the A complex. Whereas  

mutations in clusters 15, 16 and 20 represented ESMs with the most 
dramatic change in the splicing phenotype of the mutant substrate 
in comparison to the wild-type substrate, ESMs in clusters 7 and 14 
had modest effects on splicing (Supplementary Fig. 10). It remains 
to be determined whether these distinct modes of splicing disruption 
are associated with the degree of severity or other aspects of disease 
phenotypes. We predict that a mechanism operating via structural 
changes (for example, cluster 20) is likely to function independently 
of tissues and cell types, as they seem more independent of trans-
acting factors that may vary across tissues and cell types, whereas 
mutational mechanisms that involve trans-acting factors recognizing 
exonic-binding motifs (for example, cluster 15) are more likely to be 
tissue and cell type dependent.

Each mutation in the 5K panel represents a variant reported in a 
patient and/or family in the last four decades. We have established a 
large-scale collection of the effect of exonic mutations on splicing and 
created a public webserver that enables visualization of the MaPSy 
results (see URLs and Supplementary Fig. 11).
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DISCUSSION
The need for better characterization of sequence variation is ever 
more urgent with the increasing number of rare variants being dis-
covered from many large-scale sequencing efforts6,32. Previous studies 
tested the effect of random k-mers in enhancing or silencing splic-
ing11,33,34. We present the results of a survey of the effects of 4,964 
point mutations on splicing using MaPSy, a new parallel splicing sys-
tem. We further characterized the splicing aberrations by their stage of 
disruption in spliceosome assembly. We found that ~10% (513/4,964) 
of exonic disease-associated alleles disrupt splicing in vivo and  
in vitro. In contrast, only 3% (7/228) of common SNPs altered splicing 
in both assays. It is interesting that in diseases that are more frequently 
caused by splicing mutations, more exonic mutations were also found 
to disrupt splicing. This likely reflects disease processes that occur 
through loss-of-function mechanisms. We found that exonic features 
have a large role in forming ESMs. We also identified 24 exonic RBP 
motifs that are associated with increased splicing and 38 RBP motifs 
that are associated with decreased splicing.

MaPSy has certain limitations; particularly, only mutations in 
exons of fewer than 100 nt in length can be evaluated owing to the 

current limitation in oligonucleotide synthesis technology. Given 
that the average length of internal exons is around 130 nt, half of 
all human exons are not eligible for splicing characterization using 
MaPSy. We also cannot rule out the presence of other influences—for 
example, flanking splice sites, different transcription efficiencies and 
tissue-specific effects, all of which are not preserved in MaPSy. It is 
intriguing that some features previously shown to be predictors for 
SSMs but not present in MaPSy (for example, flanking intron length 
and number of introns) were also identified as predictors for ESMs  
(Fig. 3b)14. These findings, together with the high concordance rate 
with splicing phenotypes in corresponding patient tissue samples, 
suggest that, despite these limitations, MaPSy contains most of the 
critical elements required for splicing in native conditions and thus is 
a powerful tool for characterization of the sequence variation underly-
ing splicing aberrations.

In conclusion, MaPSy facilitates large-scale identification and 
characterization of ESMs. The system effectively translates to 5K 
implementations of basic mutational approaches and can be fur-
ther adapted to other mutation panels, thus accelerating efforts to  
characterize all sequence variation.
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URLs. Visualization of MaSPy results, http://fairbrother.biomed.
brown.edu/ESM_browser/.

METhODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE	METhODS
Library design and synthesis. Nonsynonymous mutations classified as disease 
causing (DM) were downloaded from the Human Gene Mutation Database8 
(HGMD; accessed in May 2012) and mapped to the GRCh37/hg19 human 
reference sequence. Mutations were mapped to internal exons that were ≤100 
nt in length, and the exons that fit into 170-nt genomic windows that included 
15 nt of the downstream intron and ≥55 nt of the upstream intron (n = 4,964) 
were selected. The mutant and wild-type versions of the 170-mer genomic 
fragments were flanked by 15-mer common primer sequences and designed 
into a 200-mer oligonucleotide library. Solid-phase oligonucleotide synthe-
sis was performed by Agilent Technologies and used to generate in vivo and  
in vitro reporters.

MaPSy in vivo assays. The in vivo splicing reporter includes a cytomega-
lovirus (CMV) promoter, an adenovirus (pHMS81)36 exon with part of its 
downstream intron, the 200-mer oligonucleotide library, exon 16 of ACTN1 
with part of intron 15 and the bGH poly(A) signal sequence (Supplementary 
Fig. 12). Common sequences (everything except the 200-mer library) were 
concatenated by overlapping PCR and cloned with TOPO TA (Invitrogen) to 
generate a 5 common fragment and a 3 common fragment. Each cloned frag-
ment was PCR amplified, and equimolar amounts of the common fragments 
and the oligonucleotide library were concatenated in a single PCR reaction 
and purified and size selected twice with a 0.4:1 ratio of Agencourt AMPure 
beads (Beckman Coulter) to PCR reaction. The resulting in vivo reporters were 
transfected into human embryonic kidney HEK293T cells (ATCC) in three cell 
culture replicates using Lipofectamine 2000 (Invitrogen) in a six-well plate. 
RNA was extracted 24 h after transfection using TRIzol (Thermo Fisher) and 
DNase treated. Random 9-mers were used to generate cDNA with SuperScript 
III Reverse Transcriptase (Invitrogen) followed by PCR (GoTaq, Promega). All 
PCR reactions were kept to the lowest possible number of cycles (15–20 cycles).  
Input reporters and spliced species were sequenced on an Illumina HiSeq 
2500 (100-bp paired-end reads). Cultured cells were periodically tested for 
mycoplasma contamination.

MaPSy in vitro assays. The in vitro splicing reporter has a design similar to 
that of the in vivo reporters, but it lacks the ACTN1 exon and a T7 promoter 
was used (Supplementary Fig. 12). In vitro reporters were obtained via tran-
scription in vitro using T7 RNA polymerase (Stratagene) and internally labeled 
with [α-32P]UTP (PerkinElmer) and were capped with G(5)ppp(5)G (New 
England BioLabs). The resulting RNA was gel purified and used for splicing 
reactions in 40% HeLa-S3 (NCCC) nuclear extracts containing 40% HeLa-S3 
nuclear extract for 80 min at 30 °C (the salt conditions for splicing reactions 
have been previously described)37. Pools of input and spliced RNA were con-
verted to cDNA (SuperScript III, Invitrogen) and used to generate an Illumina 
library (NEBNext kit, New England BioLabs) for deep sequencing. For glyc-
erol-gradient fractionation, 120 µl of the splicing reaction was treated with 0.5 
mg/ml heparin for 5 min at 30 °C and then loaded onto 3.75 ml of a 10–30% 
glycerol gradient and centrifuged at 175,000g using a SW55 rotor (Beckman 
Coulter) at 4 °C for 2.5 h. After centrifugation, the gradient was fractionated 
from top to bottom in 16 equal volumes, and the fractions were analyzed on 
2.1% native agarose (UltraPure Low-Melting-Point Agarose, Invitrogen) or 
8% denaturing polyacrylamide (29:1 cross-linking) gels. The in vitro MaPSy 
assays were done in two experimental replicates. Gels were visualized with a 
Typhoon PhosphorImager (GE Healthcare). Unspliced RNAs that were bound 
to different complexes were extracted from relevant fractions, converted to 
cDNA (SuperScript III, Invitrogen), reattached to the T7 promoter sequence 
by PCR, gel purified and used as template for subsequent in vitro transcription 
to make pre-mRNA substrates for the next round of SELEX (Supplementary 
Fig. 9a). RNA pools recovered from each purification step were converted to 
cDNA, PCR amplified and analyzed by deep sequencing (Illumina HiSeq 2500, 
100-bp paired-end reads).

Library species alignment and counting. We generated ‘reference genomes’ 
for both the in vivo and in vitro libraries with each pair of wild-type (refer-
ence) and mutant species treated as its own ‘chromosome’. Paired-end reads 
were mapped using the STAR aligner38. For input alignment, we did not allow 

for split reads and only uniquely mapped reads with a maximum of ten mis-
matches were allowed. We used the same settings for output alignment as we 
did for input alignment, with the exception that we allowed for split reads. 
Because there may be more than one mutation per exon in the 5K panel, the 
requirement for calling a species as wild type can be more stringent than the 
requirement for calling each of the mutants, given that calling the wild-type 
species would require the read pair to span all mutation positions in the same 
exon, whereas calling the mutant species would only require the read pair to 
span the respective mutant position. Thus, we also required all mapped reads 
to span all mutation positions in order to ensure balanced detection of wild-
type and mutant species.

Allelic imbalance analyses. The allelic ratios for MaPSy analyses were cal-
culated as 
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where mo is the count of mutant spliced species, mi is the count of mutant 
input, wo is the count of wild-type spliced species and wi is the count of wild-
type input. To assess statistical significance, a two-sided Fisher’s exact test 
was used and the resulting P values were adjusted to account for multiple 
comparisons using the p.adjust function in R (method = ‘fdr’). A significance 
level of <0.05 and an allelic ratio of ≥1.5-fold were used to call ESMs.

Splicing efficiency analyses. To compare splicing performance between indi-
vidual species, the following splicing index was calculated for each species 
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where spli is the count for spliced output for species i, inpi is the count for the 
input for species i and n is the number of species in the library pool.

MaPSy validation in patient samples. Tissue samples (n = 13) were obtained 
from the University of Utah School of Medicine (Salt Lake City, UT), the 
Washington University School of Medicine Alzheimer’s Disease Research 
Center (St. Louis, MO), Ohio State University (Columbus, OH), the National 
Institute of Child Health and Human Development (Bethesda, MD) and 
the Coriell Repository. Ethical approvals were granted by local institutional 
review boards, and informed consent was obtained from all participants. 
RNA was extracted using the PAXgene kit (Qiagen) for whole-blood sam-
ples, the RNAeasy kit (Qiagen) for postmortem brain samples and TRIzol 
(Life Technologies) for all other samples, using the respective manufacturer’s 
protocols. SuperScript III Reverse Transcriptase (Invitrogen) was used to gen-
erate cDNA with random 9-mers, followed by PCR (GoTaq, Promega). PCR 
primers were designed to map to exons flanking the mutant exon. In the case 
of individuals with nonsense mutations for whom we had lymphoblastoid 
cell lines or fibroblasts available, the cells were also treated with 10 µg/ml 
cycloheximide for 3 h before RNA extraction.

MaPSy validation in ENCODE data. We downloaded 46 whole-cell RNA–seq 
long poly(A)+ ENCODE data sets for 19 different cell lines (for accession 
numbers, see Supplementary Table 4). Reads were mapped to hg19 using 
the STAR38 aligner with default parameters. Each STAR output generates a 
splice-junction file, which was used to calculate percentage usage at each splice 
junction as follows. 
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Results from multiple runs of the same cell lines were collapsed. The hg19 
positions of the 3′ splice sites (ss), 5′ splice sites, upstream 5′ splice sites 
and downstream 3′ splice sites for all wild-type exons in the 5K panel were 
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retrieved and were binned into four groups of increasing splicing perform-
ance in MaPSy. Average percentage usage at both splice sites was plotted in 
each bin and compared.

HGMD mutation analyses. Disease-causing splicing and coding-sequence 
mutations were selected from HGMD (n = 77,943). The mutations were classi-
fied as splicing, missense or nonsense mutations, and the numbers of all classes 
of mutation were determined for each gene. The total number of mutations was 
plotted against the total number of SSMs in a gene (Fig. 2a). Weighted random 
sampling was then used to construct a 99.9% confidence interval that capitulates 
the expected number of SSMs given the total number of mutations within a 
gene. Using the proportion of total SSMs to total mutations in the HGMD as a 
weight for random sampling, the proportion of SSMs given the total number 
of mutations in each gene was simulated 1,000 times. Genes falling outside the 
simulated values represent genes that have more (above the confidence interval) 
or fewer (below the confidence interval) SSMs than expected (P < 0.01) based on 
the distribution of mutation types within the data set. Haploinsufficiency scores 
were obtained from published data10. HGMD genes were binned as haploinsuf-
ficient genes (haploinsufficiency (HI) score = 1), moderately haploinsufficient 
genes (HI score = 0.7–1) and haplosufficient genes (HI score ≤0.7).

Random forest classification. We used R implementation of random for-
est15, a nonparametric ensemble learning method, to model the contribution 
of various genomic, sequence and functional features to the likelihood that 
an exonic mutation will have an impact on splicing. Each tree in the forest 
is constructed with a different bootstrap sample from the original data set, 
with approximately two-thirds of the bootstrap samples being used for con-
struction of the kth tree and the remaining one-third (out-of-bag data) used 
for cross-validation. The results from all trees are then averaged to provide 
unbiased estimates of predicted values, error rates and measures of variable 
importance. Default parameters were used to build the random forest model, 
with the exception that the number of trees was specified as 1,000. As variable 
importance measures may vary depending on the parameters of the algorithm, 
and both the degree of correlation and the scale of the variables can influence 
them, we opted to use two different methods for feature selection and measures 
of importance. The first method created shuffled copies of all the features 
(shadow features) and trained a random forest classifier using the supple-
mentary set while iteratively removing irrelevant features (those with z scores 
less than the maximum z score of the respective shadow features). This was 
done until all features were either confirmed or rejected, using the Boruta39 
package in R. For the second method, we generated the null distribution of 
the variable importance measures by permuting the response variable so that 
the relationship between the response and predictor variables was destroyed. 
This was done with 1,000 runs of random forest, and the empirical P values for 
importance measures were calculated by counting the number of occurrences 
in which each importance measure in the original data was either lower or 
equal to the respective importance measure in the permuted data. Features 
that are selected in both methods with significance level <0.05 were used for 
the final random forest model.

Random forest predictor variables. Splice-site strength was computed using 
Perl scripts downloaded from the MaxEntScan35 package, which uses a max-
imum-entropy approach on large data sets of splice sites in humans while 
taking into account both adjacent and nonadjacent dependencies. The splice-
site models assign log-odds ratios to 9-bp sequences (−3 to +6 positions) for 
the 5 splice-site scores and 23-bp sequences (−20 to +3 positions) for the 3 
splice-site scores. ‘SS vars’ is the sum of the differences in wild type–mutant 
splice-site scores for all SSMs in the HGMD8 and ExAC6 datasets at each 
exon. ESEs and ESSs were downloaded from published data11,16,40. ‘ESRseq 
diff ’ was computed as the wild type–mutant difference in hexamer splicing 
scores11. Haploinsufficiency scores were obtained from a previous study that 
developed a haploinsufficiency prediction model using a large deletion data 
set (Wellcome Trust Consortium Controls)10. PPT scores were computed as 
previously described41. ‘Exon POS in gene’ was calculated as exon number 
divided by the total number of exons in the gene (values between 0 and 1). The 
free energy estimate (∆G) was computed using ViennaRNA package31 version 
1.8.5, using default settings with the --d2 and --noLP options.

Motif analyses. RBP, ESE and ESS motifs were obtained from published 
sources11,21. ESE and ESS hexamers were mapped and counted in each of the 
mutant and wild-type exons from the 5K panel. The contribution of known 
splicing elements to MaPSy splicing was evaluated by plotting the mutant–wild 
type difference in ESE and ESS counts against the mutant/wild type splicing 
ratio in sliding windows (size = 1,000, step = 1). RBP motifs were mapped to 
the exons and upstream introns of the 5K panel using the matchPWM func-
tion from the Bioconductor package42 with default settings (minimum score =  
0.8). We computed the maximum matchPWM score percentiles of all span-
ning n-mers at the mutation positions that overlapped the exonic motif maps 
and calculated the mutant–wild type difference for each mutation position  
(n = length of motif). The in vitro and in vivo splicing profiles of exonic motifs 
were generated by plotting the mean of the maximum score differences in 
rolling windows of increasing mutant allele inclusion of spliced species (i.e., 
mutant/wild type ratio, window size = 1,000, step = 1). Intronic motif maps 
of wild-type species (n = 2,086) were used to calculate intronic motif density 
for each RBP (Supplementary Fig. 8a). Wild-type splicing profiles of intronic 
motifs were generated by plotting the mean motif density in rolling windows 
of increasing splicing efficiency (window size = 200, step = 1). In vitro and  
in vivo profiles were combined and fitted using the smooth.spline function in 
R43. The Bayesian information criterion was used to determine the optimal 
number of clusters with the mclust function from the mclust R package44. 
Profiles were clustered on the basis of the coefficient values from spline fitting 
using the hclust function in R (Fig. 4c and Supplementary Fig. 8b).

RBP-binding motif validation. We ordered small interfering RNA (siRNA) 
for human PTBP1 from Thermo Scientific (s11436) and siRNA for human 
SRSF1 from Dharmacon as previously described23. For control siRNA, 
AllStar negative-control siRNA (Qiagen) was used. Minigenes were synthe-
sized by Synbio Technologies. HeLa cells (ATCC) were plated 24 h before 
transfection. For PTBP1 knockdown, 7.5 µl of Lipofectamine RNAiMAX 
(Invitrogen) was used to transfect siRNA for PTBP1 (20 nM, final concen-
tration) in a six-well plate for 48 h according to the manufacturer’s protocol 
(Invitrogen). This was followed by a second transfection with 3.75 µl of 
Lipofectamine 3000 (Invitrogen) and the same siRNA in Opti-MEM (Life 
Technologies) and 500 ng of DNA in 100 µl of pure DMEM (Invitrogen). 
RNA was extracted 24 h later with TRIzol according to the manufacturer’s 
protocol (Ambion), followed by DNase treatment and RT–PCR as described 
above. For SRSF1 knockdown, 1.5 µl of Lipofectamine 3000 (Invitrogen) 
was used to transfect siRNA for SRSF1 (20 nM final concentration) in Opti-
MEM (Life Technologies) and 500 ng of DNA in 100 µl of pure DMEM 
(Invitrogen). After 72 h, RNA was isolated, followed by DNase treatment and 
RT–PCR. Knockdown efficiencies were evaluated with immunoblotting using  
anti-SRSF1 (sc-33652, Santa Cruz), anti-PTBP1 (32-4800, Thermo Fisher) 
and anti-GAPDH (sc-47724 and FL-335, Santa Cruz). All experiments were 
done in two cell culture replicates that had been periodically tested for myco-
plasma contamination.

Functional SELEX analysis. The allele ratios were calculated as follows 

log2
m m
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where mie is the minor allele count in the enriched pool, mii is the minor allele 
count in input, mje is the major allele count in the enriched pool and mji is the 
major allele count in input. The minor allele was the allele that spliced less effi-
ciently than the respective major allele; these alleles differed by one nucleotide. 
All analyses were performed in R. Hierarchical clustering was performed on all 
mutant–wild type pairs that were recovered in all purified fractions (n = 4,873) 
using the hclust function with the complete linkage method and Euclidean dis-
tances. Bayesian information criterion plots were generated for k = 1 to k = 50  
using the mclust package to estimate the optimal number of clusters. The 
resulting clusters were visualized, and the tree was cut using the cutree func-
tion (k = 32). To determine the significance of the observation that mutations 
in the same exons were more often clustered together, we permuted the exon 
assignment in the 32 clusters 10,000 times and obtained the c2 distribution of 
the permuted data. The P value was obtained by counting the number of times 

©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



Nature GeNetics doi:10.1038/ng.3837

the computations of the permuted data exceeded or equaled that of the original 
data divided by the number of permutations. To examine whether certain 
genomic features may act as ‘signatures’ of the identified clusters, we plotted 
the distribution of each feature in the different clusters, and significance was 
determined by the mean difference in two-sided t-statistics on the actual data 
and permuted data 10,000 times using the flip function followed by flip.adjust 
(method = ‘fdr’) to account for multiple testing45.

Data availability. The data generated from this study (raw allelic counts and 
allelic ratios from each mutant–wild type pair from MaPSy experiments with 
the corresponding genomic positions, variant allele and HGMD accession num-
bers) are available at http://fairbrother.biomed.brown.edu/ESM_browser/. 
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