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Background: Most intronic lariats are rapidly turned over after splicing. However, new research suggests that some

introns may have additional post-splicing functions. Current bioinformatics methods used to identify lariats require a

sequencing read that traverses the lariat branchpoint. This method provides precise branchpoint sequence and

position information, but is limited in its ability to quantify abundance of stabilized lariat species in a given RNAseq

sample. Bioinformatic tools are needed to better address these emerging biological questions.

Methods: We used an unsupervised machine learning approach on sequencing reads from publicly available

ENCODE data to learn to identify and quantify lariats based on RNAseq read coverage shape.

Results: We developed ShapeShifter, a novel approach for identifying and quantifying stable lariat species in RNAseq

datasets. We learned a characteristic “lariat” curve from ENCODE RNAseq data and were able to estimate

abundances for introns based on read coverage. Using this method we discovered new stable introns in these samples

that were not represented using the older, branchpoint-traversing read method.

Conclusions: ShapeShifter provides a robust approach towards detecting and quantifying stable lariat species.
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Author summary: RNA splicing is a post-transcriptional process in which introns are excised and exons are ligated

together, forming the mRNA product. While most RNA intron lariats are rapidly degraded after splicing, some introns

exhibit unusual stability and persist post-splicing. There is a lack of existing tools to profile these stable RNA species. Here

we developed ShapeShifter, an approach to identify and quantify intronic lariats in RNA sequencing data. Using a clustering-

based approach over the shape of sequencing read pileup, we defined a characteristic lariat curve. This approach validates

known stable introns and also discovers potential new stable introns.

INTRODUCTION

RNA splicing is a post-transcriptional processing step in

which long, non-coding sequences (introns) are removed

from within a transcript, and the coding sequences

(exons) are ligated together to create the mature mRNA

transcript. The splicing reaction occurs through two

transesterification reactions. In the first reaction, the 2′OH

of the branchpoint (BP) nucleotide, typically an adeno-

sine, will attack the 5′ splice site (5′ss). This forms the

looped lariat intermediate molecule with an unusual 2′-5′

linkage connecting the BP to the 5′ss. In the second

reaction, the free 3′OH of the 5′ exon attacks the 3′ splice

site (3′ss), resulting in the ligated exonic product and an

excised lariat.

After the splicing reaction, the intronic lariat is

typically turned over quickly. DBR1, the RNA debranch-

ing enzyme, selectively recognizes and hydrolyzes the 2′-

5′ linkage in a rate-limiting manner. The linear

debranched intron is then quickly degraded by exonu-
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cleases. It has been demonstrated that diminished DBR1

activity causes decreased lariat turnover and subsequent

increased lariat accumulation in cells in both Sacchar-

omyces cerevisiae and Schizosaccharomyces pombe [1,2].

There is strong biological imperative to rapidly turn over

introns, both to release free nucleotides and sequestered

RNA binding proteins for future rounds of transcription

and splicing. While the vast majority of research focus has

been studying the mRNA product of splicing, it is clear

that the cell goes through much energy to both transcribe

and splice introns. An average human coding genes

contains 9.8 introns, and remarkably, introns make up

about half of the human genome [3]. While historically

thought of as “junk” nucleic acid, emerging research is

suggestive that introns may have functional roles post-

splicing.

While most lariats are turned over quickly, there exist

cases of well-studied lariats that appear to resist

degradation and persist in the cell. One of the first

discovered stabilized lariats is derived from an intron

from the T cell receptor-beta gene and accumulates in the

nucleus of T cells [4]. Additionally, stabilized lariats have

also been discovered in viruses. The first discovery of a

viral stabilized lariat was a simian virus 40 (SV40) intron

accumulating to high levels in infected Xenopus laevis

oocytes [5]. Other viruses, including herpes simplex virus

1 (HSV1) and human and murine cytomegalovirus were

later found to also produce stable a stable lariat [6–10].

While the function of these viral introns remains

unknown, viruses are under selective pressure to maintain

a small genome size and depend upon host cellular

machinery. The presence of these stable viral introns is

suggestive of function.

Recent genomic studies have discovered potential post-

splicing functions for introns. One example of a

functional lariat is derived from the IgH locus in B

cells. When B cells are stimulated to undergo class

switching, the IgH locus is spliced, producing an intronic

lariat. This lariat is subsequently debranched by DBR1,

and then acts as a guide RNA bringing the activation-

induced cytidine deaminase (AID) enzyme to the

complementary DNA, resulting in class-switching recom-

bination [11]. Another example of a functional intron is

derived from the ANKRD52 locus. This lariat intron

accumulates near its host gene transcription and interacts

with RNA polymerase II to potentially regulate its host

gene expression [12]. In genome-wide studies of cellular

RNA species, it was recently discovered that stable

intronic species accumulated as lariat molecules in

Xenopus oocytes, suggesting that these lariats may play

roles in oogenesis, embryogenesis or development

[13,14].

Due to this growing field, new tools are required to

better annotate and quantify lariat levels in a cell. When

lariats were first discovered, they were characterized by

their unusual gel mobility due to their circular structure,

and branchpoints were mapped using primer extension

strategies [15–19]. It was later discovered that reverse

transcriptase (RT) could read through the lariat 2′-5′

linkage and inverted primers were utilized to map

branchpoint location in a small number of candidate

introns using a RT-PCR based strategy [20,21]. Our group

was the first to develop an inverted read alignment

strategy to map branchpoints in RNA deep sequencing

data [22]. We then applied this strategy to ENCODE

publicly available sequencing data to map branchpoints

for 16.8% of all human introns [23]. While these

strategies allow us to create an extensive branchpoint

annotation and learn a great deal about branchpoint

chemistry, they are limited in their ability to quantify the

levels of individual lariat loci in the cell. An RNA

sequencing read that traverses the BP-5′ss junction is

incredibly rare due to the low efficiency of RT reading

over the 2′-5′ chemistry linkage. In a given sample, the

majority of BPs are defined by a single lariat read, which

makes it impossible to quantify lariat levels using this

technique. Additionally, it is possible that other factors

unrelated to the lariat levels, such as secondary structure

or BP sequence, can affect RT read-through, which makes

quantification from this method challenging.

Here, we present ShapeShifter, a lariat-profiling

approach that relies on the shape and density of RNA

sequencing reads to identify and quantify stabilized lariats

in RNA deep sequencing data. Using an unsupervised

machine learning approach, we developed a lariat-calling

heuristic from publicly available ENCODE RNA sequen-

cing samples. ShapeShifter can apply this metric to new

RNA sequencing datasets to identify stabilized lariats and

calculate the intronic read density over the entire intron to

quantify its abundance. This abundance value can be

compared between samples to identify perturbations that

affect lariat levels both in bulk and at individual loci.

RESULTS

In our previous study, we released a branchpoint

annotation for 16.8% of human introns using an inverted

alignment strategy [23]. This inverted alignment strategy

requires an RNA sequencing read that reads through the

2′-5′ lariat linkage and traverses the BP-5′ss junction

(Figure 1A). These lariat reads are rare due to both

biological and technical reasons. Biologically speaking,

introns are typically rapidly turned over post-splicing to

recycle both nucleotides and sequestered RNA binding

proteins. Technically, lariat reads are difficult to capture

both because it has a strict positional requirement, but also

due to the chemistry of the linkage. While RT is capable

of reading through the lariat 2′-5′ linkage, it is a low
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efficiency read-through and the RT will often pause,

misincorporate nucleotides, or fall off of the molecule.

Due to these reasons, the majority of recovered lariats

have low numbers of validating reads. When examining

on a per-intron basis, about 80% of introns measured have

only one unique branchpoint-traversing read in a given

RNAseq sample (Figure 1B). While this provides

valuable information about the branchpoint sequence

and position, it is impossible to use this data to deduce

information about steady-state lariat levels in the cell.

In order to determine a better way to quantitate lariat

levels, we visualized the RNAseq read coverage of raw

read pileup over several introns with high lariat read

counts in a given RNAseq sample. Five examples of

different introns in different cell lines are pictured in

Figure 2. In these cases, we observe a characteristic lariat

shape of the read density across the splice sites. High read

coverage in the center of the intron is consistent with high

levels of the intron in the cell. Additionally, we observe a

drop-off of sequencing read coverage at the splice sites,

indicative of a separate, circular molecule (as opposed to

intron retention). By using all of the intron-aligning reads,

instead of just branchpoint-traversing reads, we have

much more power to estimate individual lariat levels.

To study this phenomenon on a genome-wide scale, we

used an unsupervised machine learning approach to learn

the “lariat” shape in RNAseq read coverage data. To do

this, 44 total RNA, whole cell RNAseq datasets from

various cell lines from the ENCODE project were

analyzed. Normalized read coverage curves were calcu-

lated for each annotated hg19 intron in each of the

samples in a window downstream of the 5′ss (Figure 3A).

The 5′ end of the lariat curve was used because 5′ss

positions are much more exhaustively annotated than

branchpoint positions. These curves were then subjected

to K-means clustering (Figure 3B). In order to identify

which cluster contained stable lariats, the set of introns

that was assigned to each cluster was overlapped with sets

of introns with increasing levels of branchpoint-traversing

read evidence. We find that of the introns that have at least

five branchpoint-traversing reads there is a clear enrich-

ment for cluster 6 (Figure 3C). Consistent with our

hypothesis from the introns shown in Figure 2, cluster 6

has high read density at the end of the curve, but a steep

drop off of read coverage at the 5′ end of the intron. This

sloped drop-off suggests that these intronic reads arise not

from intron retention, but from a separate, circular

molecule.

We present the output of our clustering approach as

ShapeShifter, an approach that can be used to identify

stable lariats by the shape of intronic read pileup and

quantify abundance levels by calculating read coverage

over the intron. Using this approach we discovered other

stable lariats in the ENCODE datasets with no previous

lariat read evidence by selecting other high-coverage

introns that cluster into cluster 6. Read density plots of 10

stable lariat exemplars with no previous lariat read

evidence are depicted in Figure 4.

DISCUSSION

Here we describe an alternate method for profiling lariat

abundance in RNAseq data. Previous lariat profiling

methods describe precise branch point sequence and

position, but provide limited quantitative information.

Using these methods does not provide an adequate tool

for comparing lariat levels across samples due to low read

counts. The ShapeShifter approach, on the other hand, can

be used to estimate lariat abundance in a given sample by

calculating the read coverage over the entire intron and

normalizing to intron length and sequencing depth. This is

of particular use in comparative or perturbation future

work, in which a particular intronic locus can be

quantitatively compared across samples.

While most introns are rapidly turned over, some

introns appear to be selectively stable. Interestingly,

several viruses, which are under selective pressure to keep

their genome size small, code for introns that result in

stable lariats. Recent research has suggested functional

Figure 1. Number of unique lariat branchpoint-traversing

reads per intron. (A) Schematic of the inverted read alignment

strategy to identify branchpoint traversing reads. (B) Histogram

of the number of unique branchpoint-traversing reads per

intron in each sample.
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roles for specific stable intron species. The role of

stabilized introns after splicing is an emerging field, and

better bioinformatics algorithms are required to better

annotate and characterize these species.

MATERIALS AND METHODS

ENCODE RNAseq data was obtained from GEO

accession GSE30567. Whole cell, total RNA samples

were used for this analysis (SRR534289, SRR534290,

SRR534317, SRR534318, SRR534325, SRR534326,

SRR534327, SRR534334, SRR534335, SRR545685,

SRR545686, SRR545689, SRR545690, SRR545691,

SRR545692, SRR545693, SRR545694, SRR545701,

SRR545702, SRR545703, SRR545704, SRR545705,

SRR545706, SRR545707, SRR545708, SRR545709,

SRR545710, SRR545711, SRR545712, SRR545713,

SRR545714, SRR545715, SRR545716, SRR545717,

SRR545718, SRR545719, SRR545720, SRR545721,

SRR545722, SRR545723, SRR768411, SRR768412,

SRR768413, SRR768414).

Branchpoint traversing reads were mapped as pre-

viously published [23] (http://fairbrother.biomed.brown.

edu/data/Lariat2016/). Briefly, using the Bowtie aligner,

reads were aligned to the hg19 genome, allowing up to

three mismatches. Ungapped, complete forward align-

ments were discarded. The remaining reads were

iteratively split into head and tail regions, and aligned to

the genome. Reads with a gapped, inverted alignment

with one portion mapping directly to the 5′ splice site, and

the other portion mapping downstream intronically, were

called as branchpoint-traversing reads. The branchpoint is

determined as the last nucleotide of the downstream

intronic read portion. Splice site annotation is using hg19

UCSC genes.

In the ShapeShifter approach, reads were aligned to

hg19 genome using STAR [24]. Alignments were

outputted from STAR in bedgraph format, using uniquely

mapping reads. Using in-house perl scripts, bedgraphs

were converted into tables of read coverage values over

each nucleotide of all annotated introns. Intronic annota-

tion was obtained from UCSC hg19 knowngenes.

Windowed read coverage tables were obtained by

extracting windows downstream of the 5′ splice site of

Figure 2. RNAseq read coverage plots over five different introns in five different cell lines with multiple unique branchpoint-

traversing reads. Yellow highlight and over intronic window 0 to 50 nucleotides downstream of the 5′ splice site. (A) AP1B1 intron in HWP

cells. (B) AZI1 intron in hMSC-BM cells. (C) BGN intron in HOB cells. (D) CACTIN intron in HFDPC cells. (E) SIRT7 intron in HPC-PL cells.
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each intron in intronic positions 5–50 nt. Introns that were

shorter than 50 nucleotides were discarded. A minimum

read height of 10 reads in this window was required for

clustering (introns with less than 10 reads in this window

were discarded). All remaining intronic windows were

normalized for read pileup height [0,1] within this

window. K-means clustering approach was applied to

the normalized read coverage curves over this window

Figure 3. Identifying lariat shape in ENCODE RNAseq data. (A) Schematic showing intronic windows used for clustering

analysis. (B) K-means clustering output. Cluster centroid plotted with shaded red area as one standard deviation from centroid. (C)

Introns with branchpoint-traversing reads are enriched in cluster 6.
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Figure 4. RNAseq read coverage plots in stable introns discovered by ShapeShifter, without any prior branchpoint-traversing

read evidence. (A) ARHGEF34P intron in HPIEpC cells. (B) FAM203A intron in HOB cells. (C) DUS3L intron in IMR90 cells. (D) HIRA

intron in NHEM.f_M2 cells. (E) ITPR3 intron in HPIEpC cells. (F) NDOR1 intron in NHEM.f_M2 cells. (G) NXF1 intron in HWP cells. (H)

PACS2 intron in IMR90 cells. (I) PLXNA1 intron in IMR90 cells. (J) ZNF598 intron in IMR90 cells.
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using the MATLAB K-means tool. Clustering was

performed using 10 clusters.

For visualization, bigwig files of read coverage were

created using a combination of samtools [25], bedtools

[26], and the utility bedGraphToBigWig [27]. Bigwig

files were then uploaded to the UCSC genome browser to

generate read coverage plots ( http://genome.ucsc.edu)

[28].
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